

ChiptuneSAK documentation

Table of Contents

	Introduction
	ChiptuneSAK

	Musical Concepts
	Tuning

	Quantization

	Polyphony

	Metric Modulation

	ChiptuneSAK Intermediate Representations
	Intermediate Representations

	Chirp Workflows

	Details of Intermediate Representations

	Notes on Chirp Music Representation

	ChiptuneSAK Music Formats
	The MIDI Music Format

	Commodore SID Music

	GoatTracker (and GoatTracker Stereo)

	Sheet Music: Lilypond

	C128 BASIC music programs

	Import / Export
	I/O Base Class

	MIDI

	SID

	GoatTracker

	Lilypond

	C128 BASIC

	ML64

	Music Processing and Transformation in Chirp
	Simple Transformations

	Quantization Transformations

	Polyphony Transformations

	Metadata Transformations

	Advanced Transformations

	ChiptuneSAK Examples
	Chirp Examples

	Lilypond Sheet Music Examples

	C128 Basic Example

	Metric Modulation Examples

	ChiptuneSAK Class Reference
	Intermediate Representation Classes

	Input/Output Classes

	Compression Classes

	Version History
	Release History

	Development History

Indices and tables

	Index

	Module Index

	Search Page

Introduction

Contents

	Introduction

	ChiptuneSAK

	What can I do with ChiptuneSAK?

	What do I need to run ChiptuneSAK?

	What are some limitations of ChiptuneSAK?

	How mature is ChiptuneSAK?

ChiptuneSAK

Chiptune Swiss Army Knife is a Python music processing toolset for note data. It can transform music originating from (or being imported into) a constrained playback environment. The goal of ChiptuneSAK is to take some of the tedium out of processing chiptune music.

A typical ChiptuneSAk workflow would consist of these steps:

	Import note data from a music format

	Convert data into Chirp (ChiptuneSAK Intermediate RePresentation), which can be processed and transformed in many ways

	Manipulate or transform the note data

	Export note data to a (potentially different) music format

The initial focus of ChiptuneSAK is on Commodore music, but the tools can be extended to other “chiptune” platforms.

What can I do with ChiptuneSAK?

Our CRX2020 [http://www.crxevent.com] announcement slides [https://github.com/c64cryptoboy/ChiptuneSAK/tree/master/docs/crx2020PresentationSlides.pdf] and presentation [https://www.youtube.com/watch?v=6Pul9pwOtjc] give several examples of the kinds of things you can do with these tools, including:

	Import music from C64 SIDs and turn it into sheet music

	Perform transformations on music note data, including transposition, tempo changes, separation of chords, trimming, time shifting, quantizing, and metric modulation.

	Convert music from MS-DOS games into C64 SIDs

	Automatically generate C128 BASIC music programs

What do I need to run ChiptuneSAK?

ChiptuneSAK requires a computer with a Python interpreter (v3.8 or higher). It will run on Windows, MacOS, and linux.

What are some limitations of ChiptuneSAK?

ChiptuneSAK is primarily concerned with processing note content as opposed to musical timbre. It is not a tool for:

	Editing and tweaking instruments or particular sounds

	Processing waveform music, such as MP3 or WAV files

	Processing of sound effects

How mature is ChiptuneSAK?

ChiptunesSAK should be considered to be at an alpha level of maturity. For instance, the SID Importer has been tested on
tens of SIDs, but has not yet been scripted to run all of HVSC [https://www.hvsc.c64.org/], a process that will improve
robustness and account for important edge cases. This process should occur over the next few months.

ChiptuneSAK will eventually released as a PyPI package, but for the moment is it only available as a Github repository.

Musical Concepts

Use of ChiptunesSAK requires a basic understanding of musical concepts; we will not attempt to include a primer on music or musical notation.

However, some key concepts are important to the understanding of music and how ChiptuneSAK processes it.

	Tuning
	Base Tuning Frequency

	Pitches and Cents

	Chiptunes Tunings

	Quantization
	ChiptuneSAK Quantization

	Polyphony
	Polyphony in retro computers

	Polyphony in ChiptuneSAK

	Metric Modulation
	Tuplets background

	Metric Modulation in ChiptuneSAK

Tuning

Base Tuning Frequency

By default, ChiptuneSAK uses the A4 = 440 Hz tuning convention.

Historically, tuning standards have been based on the frequency of the note A4, which by convention is the A above middle C. Prior to the 20th century, 432 Hz (France) and 435 Hz (Italy) were competing tuning standards. By 1953, nearly everyone had agreed on 440 Hz, which is an ISO standard [https://www.iso.org/standard/3601.html] for all instruments based on chromatic scale. The Commodore SID chip covers a wide range of frequencies, from well below the range of human hearing, to B7 (NTSC) or Bb7 (PAL). By comparison, a piano keyboard only covers a little over 7 octaves, from A0 to C8.

MIDI note numbers are based on an even-tempered chromatic scale with middle C (C4) as note 60. The tuning standard, A4, is therefore note 60.

Using this convention, the frequency of MIDI note number n is given by \(440*2^{(n - 69)/12}\)

Some MIDI octave conventions differ, e.g., calling middle C (261.63Hz) C3 instead of C4. However, since MIDI does not internally use a note-octave representation, but rather a pitch number, this difference is only one of convention. With respect to ChiptuneSAK, such a system would have an octave offset of -1. SID-Wizard is an example of an octave offset +1 system (an A4 in a SIDWizard NTSC export creates a SID frequency of 3610 which is 220.063 in audio frequency which is an A3 [https://www.colincrawley.com/midi-note-to-audio-frequency-calculator/]).

Pitches and Cents

The Western music scale is made up of 12 evenly-spaced pitches. Humans hear pitch as the logarithm of the frequency, and an octave (made up of 12 equally-spaced steps, called semitones) is a factor of exactly 2 in frequency. Thus, a semitone is a frequency ratio of \(2^{1/12}\), or a factor of about 1.06. Following this logarithmic pattern, musicians divide semitones into 100 equally-spaced ratios of \(2^{1/1200}\), called cents. 100 cents make up a semitone, so any frequency can be described by a note and an offset in cents, usually set up to range from -50 to +50.

Note: all musical notes and tunings are described by ratios, not by differences. A common mistake is to treat the difference between two notes as the difference in their frequencies. So, for example, you might think that the midpoint between an A4 (440 Hz) and B4 (493.88 Hz) is \((440 + 493.88) / 2 = 466.94\) Hz. That, however, is incorrect. The true midpoint is \(440 * 2^{(log_2(466.94) - log_2(440)) / 2} = 466.16\) Hz.

Luckily, ChiptuneSAK has functions to take care of all the math for you. So think of pitches as notes plus or minus cents. This notation is very convenient. For example, if a song is written with a tuning different from the standard 440 Hz, but is otherwise in tune, all notes will differ from their standard counterparts by the same number of cents.

Chiptunes Tunings

C64: NTSC and PAL

American and European television standards diverged in the 1950s, with American and Japan using NTSC [https://en.wikipedia.org/wiki/NTSC] and Europe using PAL [https://en.wikipedia.org/wiki/PAL]. In many chiptune platforms, the system clock was tied to the screen refresh rate, which was tied to the AC power frequency. The term jiffy became synonymous with the screen refresh duration (e.g., ~16.8ms on NTSC C64). In computing, Jiffy originally referred to the time between two ticks of a system timer interrupt. In electronics, it’s the time between alternating current power cycles. And in many 8-bit machines, an interrupt would occur with
each screen refresh which was synced to the AC power cycles.

For the NTSC standard, the frame rate is supposed to be 60 ⁄ 1.001 Hz, which is very close to 59.94 frames per second. The origin of this very strange refresh rate was the need for whole numbers for dividing the refresh rate in order to allow filtering of the color signal. The PAL standard frame rate is 50 frames per second.

However, life is considerably more complex than you might think. The standards allow for a certain slop in the frame rate; retro computer hardware generally did not produce frames at exactly the specification frequencies. For example, the NTSC Commodore 64 produces frames at 59.826 Hz, determined by the main system clock frequency of 1.022727 MHz. Likewise, the PAL C64 frame rate is 50.125 Hz, from a system clock frequency of 0.985248 MHz.

As a result, music from identical music generation code will sound different on the two architectures. For music written for a PAL system, the NTSC playback will be about 19% faster and the notes 65 cents higher. Each has its strengths and weaknesses, and ChiptuneSAK lets you work with whichever you prefer.

Quantization

Written music on a page has notes of exact lengths and start times, but live performance of music is always a little imprecise; that is, in part, what makes a live performance feel live.

Most early computer-music formats required that notes start and end on exact time intervals. Many popular music genres today also use exact notes and rhythms.

The process of converting live-performance or inexact to exact start times and durations is called quantization.

Much of the processing that ChiptuneSAK uses to modify, display, and convert between music formats requires quantized music. ChiptuneSAK uses unique algorithms to quantize music and also provides the ability to de-quantize music output to some formats.

ChiptuneSAK Quantization

If the desired quantization is known a priori, ChiptuneSAK will quantize note starts and durations to known parameters.

For source material where note starts and durations are close to exact note lengths, but are noisy, and/or the minimum note length is not known, ChiptuneSAK provides an algorithm that automatically finds and applies the optimum quantization.

Note: The ChiptuneSAK quantization functions are only meant for music where the quarter-note length is known and the note start times and durations are close to the quantized values. For source material where the note lengths and time offsets are not known well (such as in most midi rips of game music), ChiptuneSAK provides other tools to help adjust the music to the point where quantization can be used.

Base Quantization Functions

All the quantization functions are applied in the Chirp Representation of the music.

The base quantization functions that encapsulate the algorithm and perform the quantization are:

	
chiptunesak.chirp.find_quantization(time_series, ppq)[source]

	Find the optimal quantization in ticks to use for a given set of times. The algorithm given
here is by no means universal or guaranteed, but it usually gives a sensible answer.

The algorithm works as follows:
- Starting with quarter notes, obtain the error from quantization of the entire set of times.
- Then obtain the error from quantization by 2/3 that value (i.e. triplets).
- Then go to the next power of two (e.g. 8th notes, a6th notes, etc.) and repeat

A minimum in quantization error will be observed at the “right” quantization. In either case
above, the next quantization tested will be incommensurate (either a factor of 2/3 or a factor
of 3/4) which will make the quantization error worse.

Thus, the first minimum that appears will be the correct value.

The algorithm does not seem to work as well for note durations as it does for note starts, probably
because performed music rarely has clean note cutoffs.

	Parameters

	
	time_series (list of int) – a series times, usually note start times, in ticks

	ppq (int) – ppq value (ticks per quarter note)

	Returns

	quantization in ticks

	Return type

	int

	
chiptunesak.chirp.find_duration_quantization(durations, qticks_note)[source]

	The duration quantization is determined from the shortest note length.
The algorithm starts from the estimated quantization for note starts.

	Parameters

	
	durations (list of int) – durations from which to estimate quantization

	qticks_note (int) – quantization already determined for note start times

	Returns

	estimated duration quantization, in ticks

	Return type

	int

	
chiptunesak.chirp.quantize_fn(t, qticks)[source]

	This function quantizes a time or duration to a certain number of ticks. It snaps to the
nearest quantized value.

	Parameters

	
	t (int) – a start time or duration, in ticks

	qticks (int) – quantization in ticks

	Returns

	quantized start time or duration

	Return type

	int

Quantization Methods

Primary use of the quantization algorithms occurs through methods of the ChirpSong and ChirpTrack classes.

	
ChirpSong.estimate_quantization()[source]

	This method estimates the optimal quantization for note starts and durations from the note
data itself. This version all note data in the tracks. Many pieces have no discernable
duration quantization, so in that case the default is half the note start quantization.
These values are easily overridden.

	
ChirpSong.quantize(qticks_notes=None, qticks_durations=None)[source]

	This method applies quantization to both note start times and note durations. If you
want either to remain unquantized, simply specify a qticks parameter to be 1 (quantization
of 1 tick).

	Parameters

	
	qticks_notes (int) – Quantization for note starts, in MIDI ticks

	qticks_durations (int) – Quantization for note durations, in MIDI ticks

	
ChirpSong.quantize_from_note_name(min_note_duration_string, dotted_allowed=False, triplets_allowed=False)[source]

	Quantize song with more user-friendly input than ticks. Allowed quantizations are the keys for the
constants.DURATION_STR dictionary. If an input contains a ‘.’ or a ‘-3’ the corresponding
values for dotted_allowed and triplets_allowed will be overridden.

	Parameters

	
	min_note_duration_string (str) – Quantization note value

	dotted_allowed (bool) – If true, dotted notes are allowed

	triplets_allowed (bool) – If true, triplets (of the specified quantization) are allowed

	
ChirpTrack.estimate_quantization()[source]

	This method estimates the optimal quantization for note starts and durations from the note
data itself. This version only uses the current track for the optimization. If the track
is a part with long notes or not much movement, I recommend using the get_quantization()
on the entire song instead. Many pieces have fairly well-defined note start spacing, but
no discernable duration quantization, so in that case the default is half the note start
quantization. These values are easily overridden.

	Returns

	tuple of quantization values for (start, duration)

	Return type

	tuple of ints

	
ChirpTrack.quantize(qticks_notes=None, qticks_durations=None)[source]

	This method applies quantization to both note start times and note durations. If you
want either to remain unquantized, simply specify either qticks parameter to be 1, so
that it will quantize to the nearest tick (i.e. leave everything unchanged)

	Parameters

	
	qticks_notes (int) – Resolution of note starts in ticks

	qticks_durations (int) – Resolution of note durations in ticks. Also length of shortest note.

Polyphony

In electronic music, the word polyphony [https://en.wikipedia.org/wiki/Polyphony_and_monophony_in_instruments] refers to playing multiple independent notes at the same time. Because of hardware limitations, electronic music instruments can only play a certain number of notes simultaneously. For synthesizers, the maximum number of notes that can be played simultaneously is the polyphonic specification [https://electronicmusic.fandom.com/wiki/Polyphonic] . Modern music workstations generally have between 64 and 256-note polyphony, or, in some cases, no polyphonic limits at all.

A related term is paraphony [https://sdiy.info/wiki/Paraphony], in which an instrument can play multiple notes at once, but these independent voices can (or must) be further processed through common electronic signal paths.

Polyphony in retro computers

The original Apple I (1976) has the ability to produce a single tone on the speaker. With the advent of the Mockingboard (1983) on the Apple II (1977), this was expanded to three square-wave voices, and later to six.

The Atari 400 and Atari 800 computers (1979) feature the distinctive sounding POKEY chip, which can be configured for four 8-bit (frequency) channels, two 16-bit channels, or one 16-bit and two 8-bit channels. Each of its square-wave channels has an independent volume control, and they share a filter (high-pass only).

The Commodore 64 (1982) uses the well-known SID chip, which offers 3 independent voices and multiple waveforms. Like the other systems, it has some shared-feature paraphony, which for the SID includes a master volume and a programmable filter through which each voice can be routed.

PC sound cards, such at the AdLib (1987) and Soundblaster (1989), use FM synthesis, creating greater potential polyphony, although for FM synthesis there is a tradeoff between polyphony and sound quality. The original AdLib card performs 9 voices plus percussion, and the Soundblaster 16 has 18-voice polyphony.

FM synthesis is challenging to program and, in the early 90s, required specialists to obtain acceptable-sounding music. So PC sound cards began to use MIDI as input, with a set of pre-defined instruments.

Of course this history is incomplete and lacks many important details, but it is meant to put polyphony into perspective.

Polyphony in ChiptuneSAK

The act of performing sheet music can increase the polyphony over what is indicated by the sheet music. For example, if a series of notes is played on a given channel, the previous note may not be fully released before the new note is struck, creating a short overlap in which polyphony is increased. Polyphony can also arise from effects such as sustain, which leaves notes on long after their release.

Often, when adapting music for use in retro computers that can only support limited polyphony, much of the polyphony arising from performance or effects must be removed. In general, for conversion to or from retro formats, ChiptuneSAK requires each individual channel (or track) to be monophonic. ChiptuneSAK also requires each track to be monophonic for the generation of sheet music. Fortunately, ChiptuneSAK offers a growing set of tools to help control polyphony for playback in constrained environments.

One can think of polyphony removal as removing any overlap between notes. Combined with Quantization, it ensures that the music representation is the same as an exact literal reading of the sheet music.

The Chirp intermediate representation has methods to eliminate polyphony in an intelligent manner, as well as to “explode” a polyphonic track into multiple monophonic tracks.

Chirp Polyphony Methods

	
ChirpSong.is_polyphonic()[source]

	Is the song polyphonic? Returns true if ANY of the tracks contains polyphony of any kind.

	Returns

	Boolean True if any track in the song is polyphonic

	Return type

	bool

	
ChirpSong.remove_polyphony()[source]

	Eliminate polyphony from all tracks.

	
ChirpSong.explode_polyphony(i_track)[source]

	‘Explodes’ a single track into multi-track polyphony. The new tracks replace the old
track in the song’s list of tracks, so later tracks will be pushed to higher indexes.
The new tracks are named using the name of the original track with ‘_sx’ appended, where
x is a number for the split notes.
The polyphony is split using a first-available-track algorithm, which works well for splitting chords.

	Parameters

	i_track (int) – zero-based index of the track for the song (ignore the meta track - first track is 0)

	
ChirpTrack.is_polyphonic()[source]

	Returns whether the track is polyphonic; if any notes overlap it is.

	Returns

	True if track is polyphonic.

	Return type

	bool

	
ChirpTrack.remove_polyphony()[source]

	This function eliminates polyphony, so that in each channel there is only one note
active at a time. If a chord is struck all at the same time, it will retain the highest
note. Otherwise, when a new note is started, the previous note is truncated.

Metric Modulation

Contents

	Metric Modulation

	Tuplets background

	Metric Modulation in ChiptuneSAK

Tuplets background

A simple factors-of-two rhythm scheme is inadequate to represent chiptunes note data. In Western music there exists a great deal of music that uses note divisions that are not powers of 2. By far the most common non-binary division is of three notes. This division can be accommodated via the choice of time signature (i.e., 3/4) or by using dot notation to change note durations. A dotted note is 1 1/2 times the equivalent undotted note; thus, a dotted half note is equal to three quarter notes. However, there are many situations in which groups of three require an explicit representation. In these situations, tuplets are used to represent groups of multiple notes that span a power-of-two duration. By far the most common tuplets are groups of three notes, called triplets. Tuplets of other numbers of notes (e.g., 5) exist but are relatively unusual.

If a song is primarily comprised of factor-of-two rhythms, then the song is written in a simple meter (implying powers-of-two lengths) and triplets are appropriate. If the song is dominated by groups-of-three rhythms, then it is usually written in what is known as a compound meter, in which each beat represents three subdivisions instead of two. Common compound meters include 6/4, 6/8, and 12/8 time signatures.

Metric Modulation is a technique that changes note duration types while still sounding the same, allowing note data to meet the constraints that may be imposed by chiptunes playback environments.

Metric Modulation in ChiptuneSAK

Metric modulation is primarily used for two purposes in ChiptuneSAK:

	Some architectures do not support note durations less than a minimum amount. For example, the shortest note available in C128 BASIC is a 16th note.

In this case, the length of each note can be multiplied by a constant and the tempo increased by the same factor, resulting in music that sounds the same but now has a shortest note duration that is longer than the original. This technique is shown in the Fix too-short note durations example. It is also used in the C128 Basic Example.

	Many chiptunes architectures do not support triplets. This limitation can be overcome by using a metric modulation of a factor of 3/2, which eliminates the triplets and puts the music into a compound meter. This technique is illustrated in the Eliminate triplets example.

Metric modulation is achieved by use of the ChirpSong modulate() method:

	
ChirpSong.modulate(num, denom)[source]

	This method performs metric modulation. It does so by multiplying the length of all notes by num/denom,
and also automatically adjusts the time signatures and tempos such that the resulting music will sound
identical to the original.

	Parameters

	
	num (int) – Numerator of metric modulation

	denom (int) – Denominator of metric modulation

ChiptuneSAK Intermediate Representations

Contents

	ChiptuneSAK Intermediate Representations

	Intermediate Representations

	Chirp Representation

	MChirp Representation

	RChirp Representation

	Chirp Workflows

	Details of Intermediate Representations

	Chirp details

	MChirp details

	RChirp details

	Notes on Chirp Music Representation

	Tempo (BPM and QPM)

	Tempo in Trackers

	BPM and rows

	Multispeed

	Octave and Frequency designations

Intermediate Representations

Chirp (ChiptuneSAK Intermediate RePresentation) is ChiptuneSAK’s framework-independent music representation. Different music formats can be converted to and from chirp. To make it easier for developers to target different input/output formats, chirp comes in three forms: Chirp (abstraction is notes and durations), MChirp (abstraction is measures) and RChirp (abstraction is tracker rows).

Chirp Representation

Chirp maps note events to a tick timeline. This mapping is different than midi, which records events only and the ticks between events. Ticks are temporally unitless, and can be mapped to time by applying a tempo in QPM (Quarter Notes Per Minute). In MIDI, note_on and note_off events come with no unique identification of the note they are starting or ending. Chirp reinterprets these events to provide note starts and lengths, which is closer to the way that humans think about music content.

Chirp notes are not necessarily quantized and polyphony is allowed.

MChirp Representation

MChirp is Measure-Based Chirp. It has many features in common with Chirp: the content consists of notes in a tick-based time framework. However, MChirp requires that all notes must fall into measures with well-defined boundaries and time signatures.

Note start times and durations in MChirp are quantized, and channels have no polyphony. All notes within a measure are contained within an MChirp Measure object.

Chirp can be converted to MChirp and vice-versa. Because each format retains different details, the conversion may be lossy.

RChirp Representation

RChirp is Row-Based Chirp. It represents the patterns (sequences) of notes around which 8-bit music play routines and trackers are built. RChirp is designed to enable operations that are naturally tied to row-based players, including pattern matching and compression. A row often holds the sound chip’s state after a play routine update. RChirp is quantized, and has no single-channel polyphony.

In RChirp, the row is the primary abstraction. RChirp also directly represents patterns and orderlists of patterns.

Chirp Workflows

This diagram illustrates the relationships between the various intermediate representations and external music formats.

[image: chirp workflow diagram]
For example, a Goattracker.sng file can be imported to RChirp, which may then be converted to Chirp and finally to MChirp, from which sheet music can be generated using Lilypond.

Most basic transformations of music (such as transposition, quantization, etc) are implemented for the Chirp representation.

Details of Intermediate Representations

Chirp details

[image: Chirp structure]
The Chirp representation is primarily dependent on three basic concepts, each implemented as a class. These classes are the ChirpSong, the ChirpTrack, and the Note.

A ChirpSong contains information about a song. It contains a variety of information, but the most important data member of the ChirpSong class is ChirpSong.Tracks, which is a list of ChirpTrack objects.

Each ChirpTrack represents one voice; while the instrument for a ChirpTrack can change, it can only be one instrument at a time. The primary data member of the ChirpTrack class is ChirpTrack.Notes, a list of Note objects.

Each Note object represents a single note. The ref:Note has a pitch (specified using MIDI note numbers), a start time (measured in MIDI ticks), a duration, and a velocity (which is mostly used for volume). These properties are all that is required for the Chirp representation of a note.

MChirp details

[image: MChirp structure]
The MChirp representation, like the Chirp representation, has song (MChirpSong) and track (MChirpTrack) objects, which, at a high level, behave much like their Chirp counterparts.

However, MChirpTrack objects have a list of Measure objects instead of a list of notes. Each Measure object contains a list of events that occur in the measure, including Note and Rest objects. Measures also contain events for the measure number, program changes, tempo changes, etc.

Each Measure is guaranteed to contain exactly the content of a single measure. All space is used; space between notes is filled with rests.

In a Measure, notes that form triplets are contained within Triplet objects.

To support measure-based representation of notes, two members that refer to ties between notes have been added to the ref:Note class: Note.tied_from and Note.tied_to. These members are only used in the MChirp representation.

RChirp details

[image: RChirp structure]
The RChirp representation is quite different from the other intermediate representations in ChiptuneSAK. While the song is represented by the RChirpSong class, it contains no tracks. Instead, RChirpSong contains a list of RChirpVoice classes, each representing a single voice. The distinction is made because voices, unlike tracks, reflect the underlying hardware.

The musical content of each RChirpVoice is contained in its RChirpVoice.rows member, which is a list of RChirpRow objects, each representing a tracker row or the sound chip state after a play call update.

However, the RChirpVoice can optionally contain the content in a separate format as well: as an RChirpOrderList that specifies patterns and repeats. The RChirpOrderList is a list of RChirpOrderEntry objects, which in turn point to RChirpPattern entries in the RChirpSong.patterns list for the song as a whole.

The RChirpPattern and RChirpOrderList objects are created by compression algorithms that discover and exploit repetitions in the musical content to make the song smaller. For the most part, they are not meant to be manipulated directly.

Notes on Chirp Music Representation

Tempo (BPM and QPM)

Music rhythm is periodic, and consists of patterns of stressed and unstressed pulses. The stressed pulses are called beats. Tempo is commonly expressed in terms of Beats Per Minute (BPM).

Sheet music will usually indicate the song’s initial tempo above the first measure using either Italian descriptors (e.g., “Largo”, “Moderato”, “Allegro”, etc.) or metronome markings (e.g., “quarter note = 120”). Metronome markings tell you the Beats Per Minute (BPM) in terms of a specific note type. By itself, the BPM can’t tell you how fast a piece will play – to do this, it must be combined with the piece’s initial time signature (aka meter). Together, the temporally-unitless proportions found in the music become tied to an absolute time frame.

The initial time signature appears before the first measure, and usually looks like one number above another, like a fraction. For “simple” time signatures (e.g., 2/4, 3/4, 3/8, 4/4, etc.) the upper number shows how many beats are in a measure (aka bar), and the lower number shows the note type that represents a beat (4 = quarter, 8 = eighth, etc.). Example: 3/2 has 3 half notes per measure. This also holds true for “complex” time signatures (e.g., 5/8, 7/4, 11/8, etc.). In general, time signatures indicate the periodicity of accents in the music’s rhythm.

When composers divide beats by powers of two (whole note into halves, quarters, 8ths, etc.), there are note types to express these subdivisions. When a beat is divided into three equals parts, there is no note type to express a 0.33333333 subdivision. In music notation, triplets often come to the rescue, which map three equal durations to the duration of either one or two notes. In the 8-bit tracker world, composers simply choose a number of duration rows that when divided by 3 yield integer solutions (e.g., a fast tempo using 24 rows for a quarter note can turn into three groups of 8 rows). There are sheet music analogs to this practice which can use standard note durations to express divisions of three. The simplest is to use a 3/4 (or 3/8) time signature. But when unwanted triplets still occur, a “compound” meter (e.g. 6/8, 9/8, 12/8) can be used. The fundamental beat in compound meters is dotted (note value + a half of the note’s value), allowing clean divisions by three. In compound meters, the metronome markings will usually show a dotted note = to a beat count per minute.

ChiptuneSAK preserves tempo across various transformations and music formats. Like MIDI, chirp understands tempos in terms of quarter notes per minute (QPM). Many music input formats explicitly represent tempos and time signatures (i.e., midi and MusicXML), and ChiptuneSAK will internally convert and store this information as QPM. This simplifies the concept of tempo by expressing it in terms of a consistent note type. Examples:

	a 3/8 meter with metronome mark “eighth note = 120” becomes QPM = 60

	a 6/8 meter with metronome mark “dotted quarter = 40” becomes QPM = 60

Tempo in Trackers

BPM and rows

In reasoning about tracker tempos, a common mental anchor point between rows and BPM is that 6 frames per row is around 125BPM on a PAL machine, when a row has a frame duration. This forms the basis of many trackers’ default tempo choice of 6 frames per row.

In this case, 6 frames per row * a PAL C64’s 20ms per frame = 0.12 seconds per row. That’s 1/0.12 or 8.333333 rows per sec, so 60 seconds / 0.12 sec per row = 500 rows per minute. 500 rows per min / 125 BPM = 4 rows per quarter note in 4/4, which means a single row becomes a 16th note.

Multispeed

Instead of a single music player update per frame, “multispeed” allows multiple player updates per frame. This means different things in different trackers. In SID-Wizard, only the tables (waveform, pulse, and filter) are affected, but the onset of new notes only happens on frame boundaries. In GoatTracker, the entire engine is driven faster, requiring speedtable values (e.g. tempos) and gateoff timers to be multiplied by the multispeed factor. Currently, goat_tracker.py does not implement multispeed handling. To accommodate multispeed, sid.py uses milliframe units.

Octave and Frequency designations

Chirp frequency reasoning defaults to the most common MIDI convention, a twelve-tone equal-tempered system with MIDI note 69 = A4 = 440 Hz as described in the Tuning section.

ChiptuneSAK Music Formats

	The MIDI Music Format
	MIDI Files

	Commodore SID Music
	SID files

	Importing SID files

	GoatTracker (and GoatTracker Stereo)
	GoatTracker in ChiptuneSAK

	Sheet Music: Lilypond
	Lilypond Sheet Music Markup

	ChiptuneSAK and Lilypond

	Lilypond Examples

	C128 BASIC music programs
	Using the PLAY command

	TEMPO calculation

	ChiptuneSAK handles all the details

The MIDI Music Format

The MIDI [https://en.wikipedia.org/wiki/MIDI] (Music Instrument Digital Interface) specification is a standard that allows digital control of musical instruments. The standard encompasses both hardware and communications protocols.

MIDI hardware uses a TTL-level serial interface with optical isolation to communicate between a controller and instruments. The serial rate is about 33 kib/s, which is fast enough to communicate instructions to the instrument with no perceptual latency.

The MIDI protocol defines messages for sending note on/off and control data. These messages are sent in real time from the controller to the instruments. Different instruments are controlled by specifying different channels for the MIDI messages.

The MIDI protocol is stateless – every message is complete on its own and does not rely on any state in the instrument. The instrument, of course, must retain state (such as what notes are playing) but the protocol itself does not.

MIDI Files

Inevitably, the MIDI protocol spawned file formats to contain MIDI messages for playback and editing. The standard MIDI file format [http://www.somascape.org/midi/tech/mfile.html] (SMF), with extension .mid, was created to fill that need. Because a MIDI file is made of instructions to send to a set of instruments, it is far more compact than the equivalent recorded music file, usually by a factor of 100 or more.

MIDI File Formats

There are 3 types of SMF files: types 0, 1, and 2. Type 0 files contain all the data for all instruments mixed together. Type 1 files have a separate track for each channel (or instrument), with a dedicated track for meta-messages such as tempo or key signature changes. Type 2 files can store multiple arrangements of the same music, and are rarely used.

ChiptuneSAK can read MIDI type 0 and type 1 files with the MIDI class. When reading type 0 files, it automatically splits the channels into separate tracks. The MIDI class will only write type 1 files.

MIDI Tempos and PPQ

The MIDI transport protocol does not declare an explicit tempo. However, playing back MIDI files requires a tempo marking to reproduce a live performance. As a result, two concepts were added to MIDI files. The first is the tempo, specified in units of QPM (quarter-notes per minute). The second is called PPQ, or Pulses Per Quarter note (PPQN), which sets the resolution of the MIDI playback. These pulses are commonly known as “MIDI ticks.” Every MIDI event during playback of a MIDI file occurs on a MIDI tick; however, multiple MIDI messages can be specified to occur on the same tick.

The playback speed, in QPM, determines the rate at which the MIDI ticks will be played back. Because of this separation between ticks and tempo, the same music can be played back at different speeds without any modification of the underlying MIDI messages. The MIDI tempo setting can be changed at any point in the song.

Because every note must start and end on a MIDI tick, the PPQ is usually set to divide every note in the song evenly. Since music will frequently have notes that have both powers of 2 and factors of 3 in their durations, commonly-used PPQ values have several factors of each: 120 (= 2 * 3 * 4 * 5), 480 (= 2 * 2 * 3 * 4 * 5), and 960 (= 2 * 2 * 2 * 3 * 4 * 5) are the most-commonly seen. Occasionally, for music with no triples, powers of 2 are used; PPQ value of 512 and 1024 are not uncommon.

ChiptuneSAK defaults to a PPQ of 960, which allows fine-resolution playback of most music.

MIDI Recordings and PPQ

Much game music, especially from MS-DOS games, was played as MIDI commands to the sound cards. The internal storage of the music was often not as MIDI files, however. Many of these songs have been recovered by capturing the MIDI messages and saving them. While this technique allows simple reproduction of the music, the captured MIDI commands do not have any information about tempo or PPQ, and thus a great deal of information must be reconstructed. ChiptuneSAK has tools that will help to recover that lost information to aid in transforming it to other forms, such as sheet music or tracker-based music.

MIDI Key Signatures and Time Signatures

As the MIDI standard became widespread, it was used for music composition and editing as well as live performance and playback. Additional features, such as song and track names, composer name, and copyright information were added to the file-based MIDI. Most significantly, meta-messages for time signature and key signature were added to the MIDI specification.

None of these messages are ever transmitted to the instruments; they are there for composition and editing of the music. Neither time signatures nor key signatures have any effect on MIDI playback. However, they are required to convert MIDI music to sheet music. ChiptuneSAK supports all of these meta-messages in MIDI files.

MIDI File Encoding

To save space, MIDI files store messages in what is known as time-delta format. That is, the messages are stored as events along with the time in ticks between events. There is no concept of absolute time for MIDI messages. A note is started with a note_on message and ended with a note_off message. The MIDI protocol is stateless and has no concept of note durations.

Humans, on the other hand, do not perceive music in a stateless way. We think of notes as starting and having a duration. ChiptuneSAK converts the stateless MIDI messages to a human-friendly stateful representation to make editing, conversion, and display easier.

MIDI Keyswitches

Some modern virtual instruments (such as Garritan) use keyswitches [https://blog.presonus.com/index.php/2018/11/30/friday-tips-keyswitching-made-easy/] , specific (usually low) MIDI notes that trigger real-time modification of instrument sounds during performance. This practice violates the spirit of the MIDI standard, in that it uses notes to trigger effects, something that was meant to be done via MIDI controllers and program messages.

Whether or not it is a good idea, the practice exists and as a result MIDI files will often contain spurious notes that are meant as keyswitches and not meant to be played back. ChiptuneSAK will, by default, remove the keyswitch notes (noes with MIDI number <= 8) when importing a MIDI file, but the option can be overridden.

Commodore SID Music

SID files

The term “SID” is commonly used to refer to a file containing Commodore 64 music. This should not be confused with the “SID” (6581/8580 Sound Interface Device) sound chip used in the Commodore 64, 128, MAX, and CBM-II computers.

A SID file contains a Commodore-native-code payload that plays music, along with headers that describe how to execute the payload. SID files often contain subtunes, which are a collection of tunes that usually share the same playback engine, “instruments”, and reusable patterns of musical notes.

A variety of SID file players have been developed over the years, from native C64 implementations [https://sourceforge.net/projects/sidplay64/] to playback on one’s Android phone [https://play.google.com/store/apps/details?id=org.garageapps.android.sidamp]. Nearly all Commodore games have had their music preserved in SID files, and the format is how contemporary C64 music is exchanged today. It’s described in detail here [https://www.hvsc.c64.org/download/C64Music/DOCUMENTS/SID_file_format.txt].

To play SID music, 6502 machine language emulation is required. Under the covers, each SID file contains either a PSID (“PlaySID”) or RSID (“Real SID”) payload. PSIDs can play back on low-fidelity emulation, while an RSID requires anywhere from a low-fidelity emulation to a full C64 emulator to play back correctly. As of release #72 of the High Voltage SID Collection [https://www.hvsc.c64.org/], the set contains 49,119 PSIDs and 3,208 RSID riles, of which 495 of the RSID files are written in BASIC. (It’s actually quite impressive that this level of generality can be brought to bear on arbitrarily-crafted C64 music code, so hats off to the HVSC team for having normalized the playback experience of tens of thousands of Commodore music programs).

The Commodore-native payload must contain an initialization entry point and a play routine entry point. The play routine is called by the SID player at regular intervals determined by an interrupt. The more frequently the play routine is called, the faster the song plays back. The SID file headers contain a set of “speed” flags, that indicate by which kind of interrupt a particular subtune should have its play routine invoked. It either specifies using VBI (Vertical Blank Interrupt), declaring that a raster interrupt will call the play routine once per frame, or a CIA (Complex Interface Adapter) timer interrupt, which can give easier control over how often the play routine is called per frame. For PSID files, the VBI must trigger at some raster value less than 256, while RSID is supposed to only use raster 311. If CIA, then the CIA 1 timer A cycle count defaults to its PAL or NTSC KERNAL bootup settings.

Some SIDs are “multispeed”, meaning that the play routine is called more than once per frame. Both PSIDs and RSIDs can be multispeed. It is likely that for multispeed PSID files to play back correctly in many low-fidelity emulation players, those PSIDs must set the CIA #1 Timer A in their init routine to indicate how much shorter the play interval is than the frame interval.

Importing SID files

ChiptuneSAK implements a SID Class that will extract music from a SID file and convert it into RChirp, which can then be converted to a variety of output formats.

Our importer is meant to be an alternative to Michael Schwendt’s SID2MIDI tool [https://csdb.dk/release/?id=136776], as that tool is closed source (not updated since 2007), is Windows only, and won’t process RSIDs. SID2MIDI can also creates somewhat messy sheet music when first imported into music engraving tools (such as Sibelius, Dorico, Finale, MuseScore, etc.), since its output is not processed with the intention of having notes fall cleanly into time-signature governed measures. Our tool chain is designed to directly addresses these issues.

The ChiptuneSAK’s SID importing capabilities were originally based on Lassee Oorni’s (Cadaver, of Goat Tracker fame) and Stein Pedersen’s excellent SIDDump tool [https://csdb.dk/release/?id=192079] (i.e., our python emulator_6502.py module is very close in functionality to SIDDump’s cpu.c code).

ChiptuneSAK will import PSID and some RSID files. Likely, some RSID files may require a higher-level of emulation fidelity that we currently provide (e.g., volume-based samples, or using more than one interrupt source to produce note data, etc.). Not knowing which RSIDs ChiptuneSAK can handle, it will always make the import attempt (unless the RSID is coded in BASIC). Since this is open source, a non-working example is merely an opportunity to increase the fidelity of the python parsing code. :)

GoatTracker (and GoatTracker Stereo)

GoatTracker [https://cadaver.github.io/] is a SID tracker [https://en.wikipedia.org/wiki/Music_tracker] that runs on modern platforms. Songs can be developed on Windows, MacOS, or Linux, and then exported for playback on original C64/C128 hardware. GoatTracker allows fine control of many of the SID chip’s capabilities.

GoatTracker in ChiptuneSAK

ChiptuneSAK can import and export GoatTracker song files in the .sng format to the various native Chirp representations. The GoatTracker class is designed to convert between the GoatTracker sng format and the RChirp Representation.

The GoatTracker sng file format does not contain information about the target architecture or whether the song requires multispeed. As a result, to take advantage of either, music should be exported to the sng file, opened in GoatTracker, and any adjustments made there.

Note: GoatTracker does not have separate frequency tables for PAL and NTSC, which means that the notes played back in NTSC mode will not be tuned to the standard A440 tuning used by ChiptuneSAK. To make the notes play at the desired pitch, the song must be encoded in PAL mode.

GoatTracker comes in two versions: the original, which can play 3 voices with one SID, and a stereo version, which can play 6 voices using 2 SIDs. ChiptuneSAK supports both versions, automatically selecting the version based on the number of voices.

2SID playback in VICE

GoatTracker can export songs to native C64 programs. Unlike other trackers (e.g., SID-Wizard), it doesn’t have an export option that includes a routine that will drive (meaning, call at regular intervals) the song’s playback routine. So let’s create one.

In the Chord Splitting example, we show how to import an MS-DOS game tune into a stereo GoatTracker sng file called LeChuck.sng. 2SID playback assumes that the C64 has two SID chips (easy to configure when using VICE).

Assuming LeChuck.sng was already created, then in stereo GoatTracker:

	Use F10 to navigate to and load the LeChuck.sng file.

	If you want, you can play the song using shift F1, and stop the playback using F4

	To export the song, press F9. Accept all defaults by pressing ENTER

	Accept the default $1000 start address and default zeropage settings.

	Note: The VIC-II chip cannot “see” the 4K of RAM that starts at $1000 or $9000 (the PLA maps the character ROM to those ranges). So RAM at $1000 is a common default for music routines.

	Accept the default format “PRG - C64 native format”. This appends a two-byte load address of $1000 to the binary before exporting.

Next, create a .d64 floppy disk image and write the lechuck.prg export to that image. Best to change the filename to all lower case before adding to the image. The file should now appear in the image without the “.prg” filename extension, and should be a file of type PRG.

	On windows, we recommend using DirMaster [https://style64.org/dirmaster] for .d64 management

	If you plan to script some of the steps of creating disk images and placing generated files into them, you can use the python subprocess module [https://docs.python.org/3/library/subprocess.html] to automate calls to the c1541(.exe) [https://vice-emu.sourceforge.io/vice_13.html] command line utility.

Copy-and-paste the following BASIC music driver program into a running C64 VICE instance:

	In VICE, select ‘Edit’->’Paste’ (Note: The lowercase text will be converted to uppercase when pasting)

	Hit the RETURN key one more time to make sure line 140 was entered

	confirm that the paste worked with the LIST command

Note: If you plan to script the creation of these kinds of BASIC programs, you can use the provided gen_prg.py module to created C64-native PRG files.

When tokenized (made C64-native), the BASIC program is 317 bytes long and lives at $0801. Line 50 of the driver program sets the end of basic to be $1000 (minus one), which stops the BASIC code, and any normal vars, indexed vars, and strings from encroaching into the music routine (which lives at $1000).

In VICE, select ‘Settings’->’Settings…’, ‘Audio Settings’->’SID Settings’, and (assuming you didn’t change the SID base addresses in gt2stereo.cfg) choose SID #2 address to be $d500.

Finally, in VICE, select ‘File’->’Attach disk image’ to navigate to the .d64 image file, then click the Open button.

RUN the BASIC program to play the dual-SID tune. A hard-coded counter (line 140) will stop the BASIC program at the end of the tune.

Compression for GoatTracker

Currently, the GoatTracker exporter is the only class in ChiptuneSAK that can take advantage of its row-based compression algorithms.

GoatTracker patterns have several important properties that will affect the options used for compression:

	GoatTracker patterns can be transposed in the orderlist. Thus, a pattern and a transposed version of the same pattern can both be played from the original pattern.

	GoatTracker patterns include the instrument number on every row. As a result, patterns can generally only be used for one voice.

	GoatTracker patterns appear to be relatively expensive, which means that short patterns do not create much (if any) compression. As a result, the minimum pattern length should be set to a higher value. In the examples, we generally use a minimum pattern length of 16.

See the One-Pass Global Class and the One-Pass Left-to-Right Class documentation for more details.

Sheet Music: Lilypond

Contents

	Sheet Music: Lilypond

	Lilypond Sheet Music Markup

	ChiptuneSAK and Lilypond

	Lilypond Examples

Lilypond Sheet Music Markup

Lilypond [http://lilypond.org/index.html] is a TeX-like markup language for sheet music. It does an excellent job of generating professional-quality music engraving.

ChiptuneSAK and Lilypond

ChiptuneSAK can generate Lilypond markup for the very useful subset of cases with a limited number of voices and no in-voice polyphony.

The LilyPond exporter is implemented in the Lilypond Class.

To use Lilypond with ChiptuneSAK, you will need to obtain and install Lilypond for your platform. The ChiptuneSAK Lilypond generator requires the MChirp intermediate format, in which the music has been interpreted as notes in measures.

The ChiptuneSAK Lilypond Class can export sheet music in two ways: either as the entire piece of music or
as a clip from a single voice. The former is usually converted to a pdf, while the latter is usually
a png file, but those options are part of the lilypond command line and not required by ChiptuneSAK.

Because the lilypond format is a text format, the output from ChiptuneSAK can easily be edited by hand with a
text editor. To facilitate such editing, ChiptuneSAK annotates the lilypond file with measure numbers and other
hints.

Lilypond Examples

See the following examples for use of Lilypond with ChiptuneSAK.

	Lilypond Song to PDF shows conversion of a captured DOS midi file into pdf sheet music.

	Lilypond Measures to PNG shows conversion of a snippet of music into a png image file.

C128 BASIC music programs

Contents

	C128 BASIC music programs

	Using the PLAY command

	TEMPO calculation

	ChiptuneSAK handles all the details

ChiptuneSAK has an engine that creates BASIC programs to play music on the Commodore 128. These generated programs make use of C128’s BASIC 7.0 music commands:

	PLAY - specify notes to be played by one or more voices

	TEMPO - determines the playback speed for the PLAY commands

	VOL - allows control of volume

	ENVELOPE - sets a voice’s Attack, Decay, Sustain, Release (ADSR), waveform, and pulse

	FILTER - controls the filters on the SID chip

	SOUND - for sound effects

Using the PLAY command

Very little music is available in C128 BASIC because it is challenging to write by hand.

What makes using the PLAY command so crazy difficult to program is that you have to order the voices’ notes and rests in a particular way to get the expected rhythmic playback. When note durations overlap between voices, the shorter duration notes must be declared after the longer notes into which they “nest”. This can become complex and difficult to do manually for 3-part music.

Here’s an example from a measure from tests/data/BWV_799.mid (a Bach 3-part invention):

[image: bwv799measure42]
Using the PLAY command, the notes and rests must be ordered as shown, or else the rhythm will play incorrectly (although 8 and 9 can be swapped without consequence).

TEMPO calculation

The TEMPO command sets tempo to a value between 1 and 255, where 1 is the slowest and 255 is the fastest speed.

Internally, the C128 assigns the following starting duration values to the following note types (refer to a BASIC ROM disassembly starting at $6F07):

	Whole/Semibreve = 1152 (note: 1152 is 2^7 * 3^2)

	Half/Minim = 576

	Quarter/Crotchet = 288

	Eighth/Quaver = 144

	Sixteenth/Semiquaver = 72

During playback, BASIC maintains a “duration left” value for each voice that is playing. Once per screen refresh, the C128 BASIC IRQ routine is called, which updates sprites, music, etc. On each update, each voice’s remaining note duration has the TEMPO value subtracted from it. When the subtraction results in a value < 0, the note is finished. This implies the following:

	Otherwise simultaneous notes will sometimes play in a staggered way at certain tempos, due to “roundoff” error caused by subtracting a tempo that does not evenly divide the remaining duration values. To remedy this situation, the PLAY command has an option for a synchronization marker that allows all the voices to “catch up.” However, this synchronization cannot be used while a note is playing in any of the voices. The programmer must find a point in the music at which every voice has finished its note to insert it.

	NTSC has faster playback than PAL

BPM (beats per minute) can be be thought of as time-signature denominators per minute. However, in this library the MIDI standard of QPM (quarter notes per minute) is used. So given a QPM, the C128 PLAY TEMPO can be computed as follows:

tempo = qpm / 60 sec per min / 4 * 1152 / frameRateHz

ChiptuneSAK handles all the details

The ChiptuneSAK C128 BASIC class handles all the details that make programming music in BASIC 7.0 tedious. It calculates the proper TEMPO for the song, and has an algorithm that generates the PLAY commands with the notes in the correct order. These commands synchronize all the voices at the end of each measure so that round-off errors do not accumulate.

Because of the synchronization and the limited number of note durations that BASIC allows, the C128Basic class requires MChirp, or music that has already been converted to measures.

Import / Export

Contents

	Import / Export

	I/O Base Class

	Import functions

	Export functions

	MIDI

	SID

	GoatTracker

	Lilypond

	C128 BASIC

	ML64

I/O Base Class

All import and export of music formats is performed by classes that inherit from the chiptunesak.base.ChiptuneSAKIO class.

The following methods are available in every I/O class. If the song format is not supported by the individual I/O class, it will either attempt a conversion or raise a chiptunesak.errors.ChiptuneSAKNotImplemented exception. Either is acceptable behavior.

Import functions

	
class chiptunesak.base.ChiptuneSAKIO[source]

	
	
to_chirp(filename, **kwargs)[source]

	Imports a file into a ChirpSong

	Parameters

	
	filename (str) – filename to import

	kwargs – Keyword options for the particular I/O class

	Returns

	Chirp song

	Return type

	ChirpSong object

	
to_rchirp(filename, **kwargs)[source]

	Imports a file into an RChirpSong

	Parameters

	
	filename (str) – filename to import

	kwargs – Keyword options for the particular I/O class

	Returns

	RChirp song

	Return type

	rchirp.RChirpSong object

	
to_mchirp(filename, **kwargs)[source]

	Imports a file into a ChirpSong

	Parameters

	
	filename (str) – filename to import

	kwargs – Keyword options for the particular I/O class

	Returns

	MChirp song

	Return type

	MChirpSong object

Export functions

	
class chiptunesak.base.ChiptuneSAKIO[source]

	
	
to_bin(ir_song, **kwargs)[source]

	Outputs a song into the desired binary format (which may be ASCII text)

	Parameters

	
	ir_song (ChirpSong, MChirpSong, or RChirpSong) – song to export

	kwargs – Keyword options for the particular I/O class

	Returns

	binary

	Return type

	either str or bytearray, depending on the output

	
to_file(ir_song, filename, **kwargs)[source]

	Writes a song to a file

	Parameters

	
	ir_song (ChirpSong, MChirpSong, or RChirpSong) – song to export

	filename (str) – Name of output file

	kwargs – Keyword options for the particular I/O class

	Returns

	True on success

	Return type

	bool

MIDI

	
class chiptunesak.midi.MIDI[source]

	Bases: chiptunesak.base.ChiptuneSAKIO

Import/Export MIDI files to and from Chirp songs.

The Chirp format is most closely tied to the MIDI standard. As a result, conversion between MIDI
files and ChirpSong objects is one of the most common ways to import and export music using the
ChiptuneSAK framework.

The MIDI class does not implement the standard to_bin() method because it uses the mido [https://mido.readthedocs.io/en/latest/] library to
process low-level midi messages, and mido only deals with MIDI files.

The Chirp framework can import both MIDI type 0 and type 1 files. It will only write MIDI type 1 files.

	
to_chirp(filename, **kwargs)[source]

	Import a midi file to Chirp format

	Parameters

	
	filename (str) – filename to import

	options –
	keyswitch (bool) Remove keyswitch notes with midi number <=8 (default True)

	polyphony (bool) Allow polyphony (removal occurs after any quantization) (default True)

	quantize (str)

	’auto’: automatically determines required quantization

	’8’, ‘16’, ‘32’, etc. : quantize to the named duration

	Returns

	chirp song

	Return type

	ChirpSong

	
to_file(song, filename, **kwargs)[source]

	Exports a ChirpSong to a midi file.

	Parameters

	
	song (chirpSong) – chirp song

	filename (str) – filename for export

	Returns

	True on success

	Return type

	bool

SID

	
class chiptunesak.sid.SID[source]

	Bases: chiptunesak.base.ChiptuneSAKIO

Parses and imports SIDs into RChirp using 6502/6510 emulation with a thin C64 layer.

This class is the import interface for ChiptuneSAK for SIDs. It runs the SID in the emulator, using the
information in the SID header to configure the driver, and captures information from the interaction of the code
with the SID chip(s) following init and play calls.

The resulting data can be converted to an RChirpSong object and/or written as a csv file that has a row for each
invocation of the play routine. The csv file is useful for diagnosing how the play routine is modifying
the SID chip and helps inform choices about the conversion of the SID music to the rchirp format.

	
to_rchirp(sid_in_filename, **kwargs)[source]

	Converts a SID subtune into an RChirpSong

	Parameters

	
	sid_in_filename (str) – SID input filename

	options –
	subtune (int = 0) - subtune to extract (zero-indexed)

	vibrato_cents_margin (int = 0) - cents margin to control snapping to previous note

	tuning (int = CONCERT_A) - tuning to use,

	seconds (float = 60) - seconds to capture

	arch (string=’NTSC-C64’) - architecture. Note: overwritten if/when SID headers get parsed

	gcf_row_reduce (bool = True) - reduce rows via GCF of row-activity gaps

	create_gate_off_notes (bool = True) - allow new note starts when gate is off

	assert_gate_on_new_note (bool = True) - True => gate on event in delta rows with new notes

	always_include_freq (bool = False) - False => freq in delta rows only with new note

	verbose (bool = True) - print details to stdout

	Returns

	SID converted to RChirpSong

	Return type

	RChirpSong

	
to_csv_file(output_filename, **kwargs)[source]

	Convert a SID subtune into a CSV file

Each row of the csv file represents one call of the play routine.

	Parameters

	output_filename (str) – output CSV filename

GoatTracker

	
class chiptunesak.goat_tracker.GoatTracker[source]

	Bases: chiptunesak.base.ChiptuneSAKIO

The IO interface for GoatTracker and GoatTracker Stereo

Supports conversions between RChirp and GoatTracker .sng format

	
to_bin(rchirp_song, **kwargs)[source]

	Convert an RChirpSong into a GoatTracker .sng file format

	Parameters

	
	rchirp_song (MChirpSong) – rchirp data

	options –
	end_with_repeat (bool) - True if song should repeat when finished

	max_pattern_len (int) - Maximum pattern length to use. Must be <= 127

	
	instruments (list of str) - Instrument names that will be extracted from GT instruments directory

	Note: These instruments are in instrument order, not in voice order! Multiple voices may use the
same instrument, or multiple instruments may be on a voice. The instrument numbers are assigned
in the order instruments are processed on conversion to RChirp.

	Returns

	sng binary file format

	Return type

	bytearray

	
to_file(rchirp_song, filename, **kwargs)[source]

	Convert and save an RChirpSong as a GoatTracker sng file

	Parameters

	
	rchirp_song (RChirpSong) – rchirp data

	filename (str) – output path and file name

	options – see to_bin()

	
to_rchirp(filename, **kwargs)[source]

	Import a GoatTracker sng file to RChirp

	Parameters

	
	filename (str) – File name of .sng file

	options –
	subtune (int) - The subtune numer to import. Defaults to 0

	arch (str) - architecture string. Must be one defined in constants.py

	Returns

	rchirp song

	Return type

	RChirpSong

Lilypond

	
class chiptunesak.lilypond.Lilypond[source]

	Bases: chiptunesak.base.ChiptuneSAKIO

	
to_bin(mchirp_song, **kwargs)[source]

	Exports MChirp to lilypond text

	Parameters

	
	mchirp_song (MChirpSong) – song to export

	options –
	format (string) - format, either ‘song’ or ‘clip’

	autosort (bool) - sort tracks from highest to lowest average pitch

	measures (list) - list of contiguous measures, from one track.
Required for ‘clip’ format, ignored otherwise.

	Returns

	lilypond text

	Return type

	str

	
to_file(mchirp_song, filename, **kwargs)[source]

	Exports MChirp to lilypond source file

	Parameters

	
	mchirp_song (MChirpSong) – song to export

	filename (str) – filename to write

	options – see to_bin()

	Returns

	lilypond text

	Return type

	str

C128 BASIC

	
class chiptunesak.c128_basic.C128Basic[source]

	Bases: chiptunesak.base.ChiptuneSAKIO

The IO interface for C128BASIC
Supports to_bin() and to_file() conversions from mchirp to C128 BASIC
options: format, arch, instruments

	
to_bin(mchirp_song, **kwargs)[source]

	Convert an MChirpSong into a C128 BASIC music program

	Parameters

	
	mchirp_song (MChirpSong) – mchirp data

	options – see to_file()

	Returns

	C128 BASIC program

	Return type

	str or bytearray

	
to_file(mchirp_song, filename, **kwargs)[source]

	Converts and saves MChirpSong as a C128 BASIC music program

	Parameters

	
	mchirp_song (MChirpSong) – mchirp data

	filename (str) – path and filename

	options –
	arch (str) - architecture name (see base for complete list)

	format (str) - ‘bas’ for BASIC source code or ‘prg’ for prg

	instruments (list of str) - list of 3 instruments for the three voices (in order).

	Default is [‘piano’, ‘piano’, ‘piano’]

	Supports the default C128 BASIC instruments:
0:’piano’, 1:’accordion’, 2:’calliope’, 3:’drum’, 4:’flute’,
5:’guitar’, 6:’harpsichord’, 7:’organ’, 8:’trumpet’, 9:’xylophone

	tempo_override (int) - override the computed tempo

	rem_override (string) - use passed string for leading REM statement instead of filename

ML64

	
class chiptunesak.ml64.ML64[source]

	Bases: chiptunesak.base.ChiptuneSAKIO

	
to_bin(song, **kwargs)[source]

	Generates an ML64 string for a song

	Parameters

	
	song (ChirpSong or mchirp.MChirpSong) – song

	options –
	format (string) - ‘compact’, ‘standard’, or ‘measures’;
‘measures’ requires MChirp; the others convert from Chirp

	Returns

	ML64 encoding of song

	Return type

	str

	
to_file(song, filename, **kwargs)[source]

	Writes ML64 to a file

	Parameters

	
	song (ChirpSong or mchirp.MChirpSong) – song

	options – see to_bin()

	Returns

	ML64 encoding of song

	Return type

	str

Music Processing and Transformation in Chirp

Contents

	Music Processing and Transformation in Chirp

	Simple Transformations

	Quantization Transformations

	Polyphony Transformations

	Metadata Transformations

	Advanced Transformations

Most music transformation and processing capabilities in ChiptuneSAK are performed in the Chirp representation. The Chirp classes together implement a rich set of transformations to allow straightforward programmatic control over many song details.

To perform these operations, music is imported and converted to the Chirp representation. The ChirpSong and ChirpTrack classes have a large number of pre-defined music transformation methods, and are designed to make addition of new methods straightforward.

For transformations involving changing notes, if a method is defined for a ChirpSong class, the same method is defined for the ChirpTrack class; the track method is called by the song method for all tracks.

Metadata transformations either apply to the complete song or to an individual track.

Simple Transformations

	
ChirpSong.transpose(semitones, minimize_accidentals=True)[source]

	Transposes the song by semitones

	Parameters

	
	semitones (int) – number of semitones to transpose by. Positive transposes to higher pitch.

	minimize_accidentals (bool) – True to choose key signature to minimize number of accidentals

	
ChirpSong.scale_ticks(scale_factor)[source]

	Scales the ticks for all events in the song. Multiplies the time for each event by scale_factor.
This method also changes the ppq by the scale factor.

	Parameters

	scale_factor (float) – Floating-point scale factor to multiply all events.

	
ChirpSong.move_ticks(offset_ticks)[source]

	Moves all notes in the song a given number of ticks. Adds the offset to the current tick for every event.
If the resulting event has a negative starting time in ticks, it is set to 0.

	Parameters

	offset_ticks (int) – Offset in ticks

	
ChirpSong.truncate(max_tick)[source]

	Truncate the song to max_tick

	Parameters

	max_tick (int) – maximum tick number for events to start (song will play to end of any
notes started)

Quantization Transformations

	
ChirpSong.estimate_quantization()[source]

	This method estimates the optimal quantization for note starts and durations from the note
data itself. This version all note data in the tracks. Many pieces have no discernable
duration quantization, so in that case the default is half the note start quantization.
These values are easily overridden.

	
ChirpSong.quantize(qticks_notes=None, qticks_durations=None)[source]

	This method applies quantization to both note start times and note durations. If you
want either to remain unquantized, simply specify a qticks parameter to be 1 (quantization
of 1 tick).

	Parameters

	
	qticks_notes (int) – Quantization for note starts, in MIDI ticks

	qticks_durations (int) – Quantization for note durations, in MIDI ticks

	
ChirpSong.quantize_from_note_name(min_note_duration_string, dotted_allowed=False, triplets_allowed=False)[source]

	Quantize song with more user-friendly input than ticks. Allowed quantizations are the keys for the
constants.DURATION_STR dictionary. If an input contains a ‘.’ or a ‘-3’ the corresponding
values for dotted_allowed and triplets_allowed will be overridden.

	Parameters

	
	min_note_duration_string (str) – Quantization note value

	dotted_allowed (bool) – If true, dotted notes are allowed

	triplets_allowed (bool) – If true, triplets (of the specified quantization) are allowed

All the above methods make use of this quantization function:

	
chirp.quantize_fn(qticks)

	This function quantizes a time or duration to a certain number of ticks. It snaps to the
nearest quantized value.

	Parameters

	
	t (int) – a start time or duration, in ticks

	qticks (int) – quantization in ticks

	Returns

	quantized start time or duration

	Return type

	int

Polyphony Transformations

	
ChirpSong.remove_polyphony()[source]

	Eliminate polyphony from all tracks.

	
ChirpSong.explode_polyphony(i_track)[source]

	‘Explodes’ a single track into multi-track polyphony. The new tracks replace the old
track in the song’s list of tracks, so later tracks will be pushed to higher indexes.
The new tracks are named using the name of the original track with ‘_sx’ appended, where
x is a number for the split notes.
The polyphony is split using a first-available-track algorithm, which works well for splitting chords.

	Parameters

	i_track (int) – zero-based index of the track for the song (ignore the meta track - first track is 0)

Metadata Transformations

	
ChirpSong.set_time_signature(num, denom)[source]

	Sets the time signature for the entire song. Any existing time signature changes will be removed.

	Parameters

	
	num –

	denom –

	
ChirpSong.set_key_signature(new_key)[source]

	Sets the key signature for the entire song. Any existing key signatures and changes will be removed.

	Parameters

	new_key (str) – Key signature. String such as ‘A#’ or ‘Abm’

	
ChirpSong.set_qpm(qpm)[source]

	Sets the tempo in QPM for the entire song. Any existing tempo events will be removed.

	Parameters

	qpm (int) – quarter-notes per minute tempo

Advanced Transformations

	
ChirpSong.remove_keyswitches(ks_max=8)[source]

	Some MIDI programs use extremely low notes as a signaling mechanism.
This method removes notes with pitch <= ks_max from all tracks.

	Parameters

	ks_max (int) – Maximum note number for the control notes

	
ChirpSong.modulate(num, denom)[source]

	This method performs metric modulation. It does so by multiplying the length of all notes by num/denom,
and also automatically adjusts the time signatures and tempos such that the resulting music will sound
identical to the original.

	Parameters

	
	num (int) – Numerator of metric modulation

	denom (int) – Denominator of metric modulation

The following are meant to be applied to individual tracks and have no corresponding methods in the ChirpSong class:

	
ChirpTrack.merge_notes(max_merge_length_ticks)[source]

	Merges immediately adjacent notes if they are short and have the same note number.

	Parameters

	max_merge_length_ticks (int) – Length of the longest note to merge, in ticks

	
ChirpTrack.remove_short_notes(max_duration_ticks)[source]

	
Removes notes shorter than max_duration_ticks from the track.

	Parameters

	max_duration_ticks (int) – maximum duration of notes to remove, in ticks

	
ChirpTrack.set_min_note_len(min_len_ticks)[source]

	Sets the minimum note length for the track. Notes shorter than min_len_ticks will
be lengthened and any notes that overlap will have their start times adjusted to allow
the new longer note.

	Parameters

	min_len_ticks (int) – Minimum note length

ChiptuneSAK Examples

Contents

	ChiptuneSAK Examples

	Chirp Examples

	MS-DOS Game MIDI Example

	Chord Splitting

	Lilypond Sheet Music Examples

	Lilypond Song to PDF

	Lilypond Measures to PNG

	C128 Basic Example

	Metric Modulation Examples

	Fix too-short note durations

	Eliminate triplets

Chirp Examples

MS-DOS Game MIDI Example

In this example a midi file captured from an MS-DOS game is processed and turned into sheet music as well as exported to GoatTracker.

Usually, midi captured from DOS games [http://www.mirsoft.info/gamemids-ripping-guide.php/] results in messy midi files that don’t include keys, time signatures, or even reliable ticks per quarter notes.

So first use the FitPPQ.py script to estimate the true note lengths and adjust them to a ppq of 960. From the tools directory, run:

FitPPQ.py -s 4.0 ../examples/data/mercantile/betrayalKrondorMercantile.mid ../examples/data/mercantile/tmp.mid

This should generate the following output:

Reading file ../examples/data/mercantile/betrayalKrondorMercantile.mid
Finding initial parameters...
Refining...
scale_factor = 5.8900000, offset = 2398, total error = 4082.2 ticks (22.51 ticks/note for ppq = 960)
Writing file ../examples/data/mercantile/tmp.mid

It is a good idea to do a sanity check on the output file, as the algorithm in FitPPQ often fails to give the best solution. A general algorithm to find the beats in a midi file is a daunting task!

In fact, an ideal method now is to use the output obtained from FitPPQ, open the resulting file and adjust the first beat of the final measure to lie exactly at the start of the final measure. If we do this with tmp.mid, we find that the first note of the final measure is at MIDI tick 226,588 for measure 60. For a PPQ of 960 and 4 quarter notes per measure, the last measure should start at tick 960 * 59 * 4 = 226,560, so we are coming in only 28 ticks late. Since we plan to quantize to a 16th note (960 / 4 = 240 ticks) then the value we found should be fine.

Now you can use those parameters (5.89 and 2398) to scale the mercantile file in the Python script, which generates Lilypond sheet music and a GoatTracker SNG file. Note that because you need to move the music to an earlier time, the offset you give to the move_ticks() method will be negative.

import subprocess

import chiptunesak
import chiptunesak.base
from chiptunesak.constants import project_to_absolute_path

"""
This example processes a MIDI file captured from Betrayal at Krondor to both sheet music and
a GoatTracker song.

It is an example of extremely complex music processing, done entirely in ChiptuneSAK.
A program called MidiEditor (windows / linux, https://www.midieditor.org/), was used to
inspect the MIDI file, evaluate and plan the required transformations, and verify the results.

It shows the steps needed for this conversion:
 1. Remove unused tracks, reorder and rename tracks to use
 2. Consolidate two tracks into one, changing instruments partway through
 3. Scale, move and adjust the note data to correspond to musical notes and durations
 4. Set minimum note lengths, quantize the song, and remove polyphony
 5. Truncate the captured song to a reasonable stopping point
 6. Convert the ChirpSong to an MChirpSong
 7. Use the Lilypond I/O object to write lilypond markup for the piece
 8. Convert the ChirpSong to an RChirpSong
 9. Assign GoatTracker instruments to the voices
10. Find repeated loops and compress the song
11. Export the GoatTracker .sng file

"""

output_folder = str(project_to_absolute_path('examples\\data\\mercantile')) + '\\'
input_folder = output_folder
input_file = str(project_to_absolute_path(input_folder + 'betrayalKrondorMercantile.mid'))
output_midi_file = str(project_to_absolute_path(output_folder + 'mercantile.mid'))
output_ly_file = str(project_to_absolute_path(output_folder + 'mercantile.ly'))
output_gt_file = str(project_to_absolute_path(output_folder + 'mercantile.sng'))

Read in the original MIDI to Chirp
chirp_song = chiptunesak.MIDI().to_chirp(input_file)

First thing, we rename the song
chirp_song.metadata.name = "Betrayal at Krondor - Mercantile Theme"
chirp_song.metadata.composer = "Jan Paul Moorhead"

print(f'Original song:')
print(f'#tracks = {len(chirp_song.tracks)}')
print(f' ppq = {chirp_song.metadata.ppq}')
print(f' tempo = {chirp_song.metadata.qpm} qpm')
print('Track names:')
print('\n'.join(f'{i+1}: {t.name}' for i, t in enumerate(chirp_song.tracks)))
print()

Truncate to 4 tracks and re-order from melody to bass
chirp_song.tracks = [chirp_song.tracks[j] for j in [3, 1, 2, 0]]

Truncate the notes in track 3 when the bass line starts
chirp_song.tracks[2].truncate(9570)

Get rid of any superfluous program changes in the tracks
for t in chirp_song.tracks:
 t.set_program(t.program_changes[-1].program)

Change the program to the bass at that point
tmp_program = chirp_song.tracks[3].program_changes[0]
new_program = chiptunesak.base.ProgramEvent(9700, tmp_program.program)
chirp_song.tracks[2].program_changes.append(new_program)

Now move the notes from track 4 into track 3
chirp_song.tracks[2].notes.extend(chirp_song.tracks[3].notes)

This is a 1-SID song, so only three voices allowed.
Delete any extra tracks and name the rest.
chirp_song.tracks = chirp_song.tracks[:3]
chirp_song.tracks[0].name = 'Ocarina'
chirp_song.tracks[1].name = 'Guitar'
chirp_song.tracks[2].name = 'Strings/Bass'

At this point, with the tracks arranged, run the FitPPQ.py program in the tools directory.

Result, after some fiddling (and FitPPQ can be *very* fiddly):
best fit scale_factor = 5.89, offset = 2398
chirp_song.move_ticks(-2398)
chirp_song.scale_ticks(5.89000)
chirp_song.metadata.ppq = 960

Now get rid of the very weird short notes in the flute part; set minimum length to an eighth note
chirp_song.tracks[0].set_min_note_len(480)

Quantize the whole song to eighth notes
chirp_song.quantize_from_note_name('8')

Now we can safely remove any polyphony
chirp_song.remove_polyphony()

The song is repetitive. Pick a spot to truncate.
chirp_song.truncate(197280)

Set the key (D minor)
chirp_song.set_key_signature('Dm')

print(f'Modified song:')
print(f'#tracks = {len(chirp_song.tracks)}')
print(f' ppq = {chirp_song.metadata.ppq}')
print(f' tempo = {chirp_song.metadata.qpm} qpm')
print('Track names:')
print('\n'.join(f'{i+1}: {t.name}' for i, t in enumerate(chirp_song.tracks)))
print()

Save the result to a MIDi file.
chiptunesak.MIDI().to_file(chirp_song, output_midi_file)

Convert to MChirp
mchirp_song = chirp_song.to_mchirp()

Make sheet music output with Lilypond
ly = chiptunesak.Lilypond()
ly.to_file(mchirp_song, output_ly_file)

If you have Lilypond installed, generate the pdf
If you do not have Lilypond installed, comment the following line out
subprocess.call('lilypond -o %s %s' % (output_folder, output_ly_file), shell=True)

Now convert the song to RChirp
rchirp_song = chirp_song.to_rchirp(arch='PAL-C64')

Let's see what programs are used
print(rchirp_song.program_map)
Gives {79: 1, 24: 2, 48: 3, 32: 4}
From General Midi,
79 = Ocarina Flute.ins
24 = Acoustic Guitar (Nylon) MuteGuitar.ins
48 = String Ensemble 1 SimpleTriangle.ins
32 = Acoustic Bass SoftBass.ins
#
instruments = ['Flute', 'MuteGuitar', 'SimpleTriangle', 'SoftBass']

Perform loop-finding to compress the song and to take advantage of repetition
The best minimum pattern length depends on the particular song.
print('Compressing RChirp')
compressor = chiptunesak.OnePassLeftToRight()
rchirp_song = compressor.compress(rchirp_song, min_length=16)

Now export the compressed song to goattracker format.
print(f'Writing {output_gt_file}')
GT = chiptunesak.GoatTracker()
GT.to_file(rchirp_song, output_gt_file, instruments=instruments)

Chord Splitting

In this example, the midi music with chord-based polyphony in one track is turned into a stereo GoatTracker song.

Using the same method as above, the scale factor and offset are determined and the chirp is scaled to make the notes fit into measures. One of the tracks has chords made of 3 notes, so the ChirpSong.explode_polyphony() method is used to turn the single track into three tracks without polyphony.

These three tracks are the used along with the two other original tracks to form a song with 5-voice polyphony, which is then exported to a stereo GoatTracker song.

import copy

import chiptunesak
from chiptunesak.constants import project_to_absolute_path

"""
This example processes a MIDI file captured from Secret of Monkey Island to a GoatTracker song.

It shows the steps needed for this conversion:
 1. Scale and adjust the note data to correspond to musical notes and durations
 2. Split a track with chords into 3 separate tracks
 3. Assign GoatTracker instruments to the voices
 4. Export the 5-track to a stereo GoatTracker .sng file
"""

input_file = str(project_to_absolute_path('examples/data/lechuck/MonkeyIsland_LechuckTheme.mid'))
output_midi_file = str(project_to_absolute_path('examples/data/lechuck/LeChuck.mid'))
output_gt_file = str(project_to_absolute_path('examples/data/lechuck/LeChuck.sng'))

chirp_song = chiptunesak.MIDI().to_chirp(input_file)

print(f'Original song:')
print(f'#tracks = {len(chirp_song.tracks)}')
print(f' ppq = {chirp_song.metadata.ppq}')
print(f' tempo = {chirp_song.metadata.qpm} qpm')
print('Track names:')
print('\n'.join(f'{i+1}: {t.name}' for i, t in enumerate(chirp_song.tracks)))
print()

First thing, we rename the song
chirp_song.metadata.name = "Monkey Island - LeChuck Theme"

print('Truncating original song...')
chirp_song.truncate(21240)

Now select and order the tracks the way we want them, which is the reverse of the midi we got.
print('Selecting and ordering tracks...')
tracks = [copy.copy(chirp_song.tracks[i]) for i in [3, 2, 1]]
chirp_song.tracks = tracks

print(f'Now {len(chirp_song.tracks)} tracks')

Now given the tracks the names we want them to have, because the track names in the original midi were
used for information that is supposed to go elsewhere in midi files.
print('Renaming tracks...')
for t, n in zip(chirp_song.tracks, ['Lead', 'Chord', 'Bass']):
 t.name = n

print('Tracks:')
print('\n'.join(f' {t.name}' for t in chirp_song.tracks))
print()

print('Adjusting ppq and tempo...')

Experimentally determine ticks per measure
- Counted measures by hand listening to the music. We identified the note at the start of measure 21
(the later the better to give a good average) which was at tick 19187
- 19187 / 20 = 959.35
Very close to 960 ticks/measure.
Any small error here will be fixed by our quantization later

We desire our new song to use a standard 960 ppq and 4 notes per measure, so we scale the ticks by 4
(assuming 9 quarter notes per measure)
chirp_song.scale_ticks(4.0)
chirp_song.metadata.ppq = 960 # The original ppq is meaningless; it was just the ppq of the midi capture program

New tempo: original tempo was 240 qpm where ppq was given as 192 which makes 240 * 192 / 60 = 768 ticks/sec
We scaled the ticks (and the tempo) by a factor of 4 so now we need 768 * 4 = 3072 ticks/sec
For a quarter note = 960 ticks that comes out to 3072 / 960 = 3.2 qps * 60 = 192
chirp_song.set_qpm(192)

Looking at the midi and listening to the song, the best quantization appears to be eighth notes.
chirp_song.quantize_from_note_name('8')

Track 2 has chords in it that have 3 notes at a time. We need to move those to separate voices, so
we split that track:
print('Exploding polyphony of chord track...')
chirp_song.explode_polyphony(1)

print(f'Now {len(chirp_song.tracks)} tracks')
print('Tracks:')
print('\n'.join(f' {t.name}' for t in chirp_song.tracks))
print()

Any other polyphony is unintentional so make sure it is all gone (in particular, one note in the bass line
seems to make a chord, but it's not real.
print('Removing remaining polyphony')
chirp_song.remove_polyphony()

Now export the modified chirp to a new midi file, which can be viewed and should look nice and neat
print(f'Writing to MIDI file {output_midi_file}')
chiptunesak.MIDI().to_file(chirp_song, output_midi_file)

Now set the instrument numbers for the GoatTracker song.
Since we want control over the instruments we specify the GT ones in track order.
print(f'Setting GoatTracker instruments...')
for i, program in enumerate([1, 2, 2, 2, 3]):
 chirp_song.tracks[i].set_program(program)

Now that everything is C64 compatible, we convert the song to RChirp format.
print(f'Converting ChirpSong to RChirpSong...')
rchirp_song = chiptunesak.RChirpSong(chirp_song)

Perform loop-finding to compress the song and to take advantage of repetition
The best minimum pattern length depends on the particular song. For this one we chose 16 rows.
print('Compressing RChirp')
compressor = chiptunesak.OnePassLeftToRight()
rchirp_song = compressor.compress(rchirp_song, min_length=16)

Now export the compressed song to goattracker format.
print(f'Writing GoatTracker file {output_gt_file}')
GT = chiptunesak.GoatTracker()
GT.set_options(instruments=['LeChuckLead', 'C128Xylophone', 'LeChuckBass'])
GT.to_file(rchirp_song, output_gt_file)

Lilypond Sheet Music Examples

Lilypond Song to PDF

In this example a MIDI song is read in and output to a multi-page PDF document.

As mentioned above, midi ripped from MS-DOS games [http://www.mirsoft.info/gamemids-ripping-guide.php/] results in messy midi files. This example
workflow shows how to turn such music into Lilypond-generated sheet music, and will use
a piece of music [http://www.midi-karaoke.info/21868cd1.html]
from an MS-DOS RPG Betrayal At Krondor (Sierra On-Line, 1993).

import os
import subprocess

import chiptunesak
from chiptunesak.constants import project_to_absolute_path

"""
This example shows how to process a song into PDF file using Lilypond using the following steps:

 1. Import the song to chirp format from a MIDI file, quantizing the notes to the nearest 32nd note
 2. Convert the song to mchirp format
 3. Save the lilypond source
 4. Run the lilypond converter from within python to generate the PDF file.

"""

output_folder = str(project_to_absolute_path('examples\\data\\lilypond')) + '\\'
input_folder = str(project_to_absolute_path('examples\\data\\common')) + '\\'
input_mid_file = input_folder + 'BWV_799.mid'
output_ly_file = output_folder + 'BWV_799.ly'

Read in the MIDI song and quantize
chirp_song = chiptunesak.MIDI().to_chirp(input_mid_file, quantization='32', polyphony=False)

It's in A minor, 3/8 time
chirp_song.set_key_signature('Am')
chirp_song.set_time_signature(3, 8)

Convert to mchirp
mchirp_song = chirp_song.to_mchirp()

Write it straight to a file using the Lilypond class with format 'song' for the entire song.
chiptunesak.Lilypond().to_file(mchirp_song, output_ly_file, format='song')

Change directory to the data directory so we don't fill the source directory with intermediate files.
os.chdir(output_folder)

Adjust the path the the file
ly_file = os.path.basename(output_ly_file)
Run lilypond
subprocess.call('lilypond -o %s %s' % (output_folder, output_ly_file), shell=True)

Lilypond Measures to PNG

In this example a MIDI song is read, and a snippet of measures is converted to a PNG image.

Often, you’d like to turn a small clip from a song into an image to use as an illustration for a document.
In this case, you may not want the entire piece exported as a pdf file, but just the clip.

Currently, ChiptuneSAK can only extract measures for a clip from a single voice.

This example gives the following output:

[image: alternate BWV 755 Clip]
import os
import subprocess

import chiptunesak
from chiptunesak.constants import project_to_absolute_path

"""
This example shows how to process a clip of a song into a PNG file using Lilypond using the following steps:

 1. Import the song to chirp format from a MIDI file, quantizing the notes to the nearest 16th note
 2. Convert the song to mchirp format
 3. Select the measures for the clip
 4. Save the lilypond source
 5. Run the lilypond converter from within python to generate the PNG file.

"""

output_folder = str(project_to_absolute_path('examples\\data\\lilypond')) + '\\'
input_folder = output_folder
input_file = input_folder + 'BWV_775.mid'
output_ly_file = output_folder + 'BWV_775.ly'

Read in the MIDI song and quantize
chirp_song = chiptunesak.MIDI().to_chirp(input_file, quantization='16', polyphony=False)
Convert to mchirp
mchirp_song = chirp_song.to_mchirp()

Create the LilyPond I/O object
lp = chiptunesak.Lilypond()
Set the format to do a clip and set the measures to the clip we want
lp.set_options(format='clip', measures=mchirp_song.tracks[0].measures[3:8])
Write it straight to a file
lp.to_file(mchirp_song, output_ly_file)

Change directory to the data directory so we don't fill the source directory with intermediate files.
os.chdir(output_folder)

Adjust the path the the file
ly_file = os.path.basename(output_ly_file)
Run lilypond
args = ['lilypond', '-ddelete-intermediate-files', '-dbackend=eps', '-dresolution=600', '--png', ly_file]
subprocess.call(args, shell=True)

C128 Basic Example

In this example a MIDI song is read and converted to C128 BASIC:

import chiptunesak
from chiptunesak.constants import project_to_absolute_path

"""
This example shows how to convert a 3-voice song to C128 Basic:

 1. Import the song to chirp format from a MIDI file, quantizing the notes to the nearest 32nd note
 2. Since C128 BASIC cannot do notes shorter than a 16th note, perform a metric modulation to double note lengths
 3. Convert the song to mchirp format
 3. Save the BASIC as source
 4. Save the BASIC as a prg file

"""

output_folder = str(project_to_absolute_path('examples\\data\\C128')) + '\\'
input_folder = str(project_to_absolute_path('examples\\data\\common')) + '\\'
input_mid_file = input_folder + 'BWV_799.mid'
output_bas_file = output_folder + 'BWV_799.bas'
output_prg_file = output_folder + 'BWV_799.prg'

Read in the MIDI song and quantize
chirp_song = chiptunesak.MIDI().to_chirp(input_mid_file, quantization='32', polyphony=False)

When imported, the shortest note is a 32nd note, which is too fast for C128 BASIC.
Perform a metric modulation by making every note length value twice as long, but
increasing the tempo by the same factor so it sounds the same. Now the shortest
note will be a 16th note which the C128 BASIC can play.
print('Modulating music...')
chirp_song.modulate(2, 1)

Convert to mchirp
print('Converting to MChirp...')
mchirp_song = chirp_song.to_mchirp()

Write .bas and .prg files
exporter = chiptunesak.C128Basic()
exporter.set_options(instruments=['trumpet', 'guitar', 'guitar'])
print(f'Writing {output_bas_file}...')
exporter.to_file(mchirp_song, output_bas_file, format='bas')
print(f'Writing {output_prg_file}...')
exporter.to_file(mchirp_song, output_prg_file, format='prg')

Metric Modulation Examples

Fix too-short note durations

examples/data/C128/BWV_799.mid is a three-part Bach invention. It contains a few 32nd notes near the end.

Unfortunately, C128 BASIC only supports notes down to 16th notes, so exporting this piece to C128 BASIC without loss of those notes is not possible without metric modulation.

In the C128 Basic Example, the line

chirp_song.modulate(2, 1)

Makes all the notes 2/1 = 2X as long, so the 32nd notes turn into 16th notes. The tempo is changed to compensate so the song sounds correct. Exporting the song to C128 BASIC now works correctly.

Eliminate triplets

Many chiptunes music players do not support triplets. Here we show you how to use metric modulation to eliminate triplets.

It may seem a little surprising, but modulation by a factor of 3/2 eliminates all triplets.

As an example, consider the following excerpt from a Chopin waltz:

[image: Original Chopin waltz excerpt]
This excerpt could not be processed by tools that only allow binary note divisions. But if we modulate by a factor of 3/2, the excerpt becomes:

[image: Modulated Chopin waltz excerpt]
The shortest note is now a sixteenth note, which means this music can now be rendered by a system that only accepts factor-of-two note values!

ChiptuneSAK Class Reference

Contents

	ChiptuneSAK Class Reference

	Intermediate Representation Classes

	Chirp

	Note

	ChirpTrack

	ChirpSong

	MChirp

	Rest

	Triplet

	Measure

	MChirpTrack

	MChirpSong

	RChirp

	RChirpRow

	RChirpOrderEntry

	RChirpOrderList

	RChirpPattern

	RChirpVoice

	RChirpSong

	Input/Output Classes

	MIDI Class

	GoatTracker Class

	SID Class

	Lilypond Class

	C128 Basic Class

	ML64 Class

	Compression Classes

	One-Pass Class

	One-Pass Global Class

	One-Pass Left-to-Right Class

Intermediate Representation Classes

Chirp

Note

	
class chiptunesak.chirp.Note(start, note, duration, velocity=100, tied_from=False, tied_to=False)[source]

	This class represents a note in human-friendly form: as a note with a start time,
a duration, and a velocity.

	
note_num = None

	MIDI note number

	
start_time = None

	In ticks since tick 0

	
duration = None

	In ticks

	
velocity = None

	MIDI velocity 0-127

	
tied_from = None

	Is the next note tied from this note?

	
tied_to = None

	Is this note tied from the previous note?

	
split(tick_position)[source]

	Splits a note into two notes at time tick_position, if the tick position falls
within the note’s duration.

	Parameters

	tick_position (int) – position to split at

	Returns

	list with split note

	Return type

	list of Note

ChirpTrack

	
class chiptunesak.chirp.ChirpTrack(chirp_song, mchirp_track=None)[source]

	This class represents a track (or a voice) from a song. It is basically a list of Notes with some
other context information.

ASSUMPTION: The track contains notes for only ONE instrument (midi channel). Tracks with notes
from more than one instrument will produce undefined results.

	
chirp_song = None

	Parent song

	
name = None

	Track name

	
channel = None

	This track’s midi channel. Each track should have notes from only one channel.

	
notes = None

	The notes in the track

	
program_changes = None

	Program (patch) changes in the track

	
other = None

	Other events in the track (includes voice changes and pitchwheel)

	
qticks_notes = None

	Not start quantization from song

	
qticks_durations = None

	Note duration quantization

	
import_mchirp_track(mchirp_track)[source]

	Imports an MChirpTrack

	Parameters

	mchirp_track (MChirpTrack) – track to import

	
estimate_quantization()[source]

	This method estimates the optimal quantization for note starts and durations from the note
data itself. This version only uses the current track for the optimization. If the track
is a part with long notes or not much movement, I recommend using the get_quantization()
on the entire song instead. Many pieces have fairly well-defined note start spacing, but
no discernable duration quantization, so in that case the default is half the note start
quantization. These values are easily overridden.

	Returns

	tuple of quantization values for (start, duration)

	Return type

	tuple of ints

	
quantize(qticks_notes=None, qticks_durations=None)[source]

	This method applies quantization to both note start times and note durations. If you
want either to remain unquantized, simply specify either qticks parameter to be 1, so
that it will quantize to the nearest tick (i.e. leave everything unchanged)

	Parameters

	
	qticks_notes (int) – Resolution of note starts in ticks

	qticks_durations (int) – Resolution of note durations in ticks. Also length of shortest note.

	
quantize_long(qticks)[source]

	Quantizes only notes longer than 3/4 qticks; quantizes both start time and duration.
This function is useful for quantization that also preserves some ornaments, such as
grace notes.

	Parameters

	qticks (int) – Quantization for notes and durations

	
merge_notes(max_merge_length_ticks)[source]

	Merges immediately adjacent notes if they are short and have the same note number.

	Parameters

	max_merge_length_ticks (int) – Length of the longest note to merge, in ticks

	
remove_short_notes(max_duration_ticks)[source]

	
Removes notes shorter than max_duration_ticks from the track.

	Parameters

	max_duration_ticks (int) – maximum duration of notes to remove, in ticks

	
set_min_note_len(min_len_ticks)[source]

	Sets the minimum note length for the track. Notes shorter than min_len_ticks will
be lengthened and any notes that overlap will have their start times adjusted to allow
the new longer note.

	Parameters

	min_len_ticks (int) – Minimum note length

	
remove_polyphony()[source]

	This function eliminates polyphony, so that in each channel there is only one note
active at a time. If a chord is struck all at the same time, it will retain the highest
note. Otherwise, when a new note is started, the previous note is truncated.

	
is_polyphonic()[source]

	Returns whether the track is polyphonic; if any notes overlap it is.

	Returns

	True if track is polyphonic.

	Return type

	bool

	
is_quantized()[source]

	Returns whether the current track is quantized or not. Since a quantization of 1 is
equivalent to no quantization, a track quantized to tick will return False.

	Returns

	True if the track is quantized.

	Return type

	bool

	
remove_keyswitches(ks_max=8)[source]

	Removes all MIDI notes with values less than or equal to ks_max. Some MIDI devices
and applications use these extremely low notes to convey patch change or other
information, so removing them (especially if you do not want polyphony) is a good idea.

	Parameters

	ks_max (int) – maximum note number for keyswitches in the track (often 8)

	
truncate(max_tick)[source]

	Truncate the track to max_tick

	Parameters

	max_tick (int) – maximum tick number for events to start (track will play to end of
any notes started)

	
transpose(semitones)[source]

	Transposes track in-place by semitones, which can be positive (transpose up) or
negative (transpose down)

	Parameters

	semitones – Number of semitones to transpose

	
modulate(num, denom)[source]

	Modulates this track metrically by a factor of num / denom

	Parameters

	
	num – Numerator of modulation

	denom – Denominator of modulation

	
scale_ticks(scale_factor)[source]

	Scales the ticks for this track by scale_factor.

	Parameters

	scale_factor –

	
move_ticks(offset_ticks)[source]

	Moves all the events in this track by offset_ticks. Any events that would have a time
in ticks less than 0 are set to time zero.

	Parameters

	offset_ticks (int (signed)) –

	
set_program(program)[source]

	Sets the default program (instrument) for the track at the start and
removes any existing program changes.

	Parameters

	program (int) – program number

ChirpSong

	
class chiptunesak.chirp.ChirpSong(mchirp_song=None)[source]

	Bases: chiptunesak.base.ChiptuneSAKBase

This class represents a song. It stores notes in an intermediate representation that
approximates traditional music notation (as pitch-duration). It also stores other
information, such as time signatures and tempi, in a similar way.

	
qticks_notes = None

	Quantization for note starts, in ticks

	
qticks_durations = None

	Quantization for note durations, in ticks

	
tracks = None

	List of ChirpTrack tracks

	
other = None

	List of all meta events that apply to the song as a whole

	
midi_meta_tracks = None

	list of all the midi tracks that only contain metadata

	
midi_note_tracks = None

	list of all the tracks that contain notes

	
time_signature_changes = None

	List of time signature changes

	
key_signature_changes = None

	List of key signature changes

	
tempo_changes = None

	List of tempo changes

	
reset_all()[source]

	Clear all tracks and reinitialize to default values

	
to_rchirp(**kwargs)[source]

	Convert to RChirp. This calls the creation of an RChirp object

	Returns

	new RChirp object

	Return type

	rchirp.RChirpSong

	
to_mchirp(**kwargs)[source]

	Convert to MChirp. This calls the creation of an MChirp object

	Returns

	new MChirp object

	Return type

	MChirpSong

	
import_mchirp_song(mchirp_song)[source]

	Imports an MChirpSong

	Parameters

	mchirp_song (MChirpSong) –

	
set_metadata()[source]

	Sets the song metadata to reflect the current status of the song. This function cleans up
any redundant item signature, key signature, or tempo changes (two events that have the same
timestamp) and keeps the last one it finds, then sets the metadata values to the first of each
respectively.

	
estimate_quantization()[source]

	This method estimates the optimal quantization for note starts and durations from the note
data itself. This version all note data in the tracks. Many pieces have no discernable
duration quantization, so in that case the default is half the note start quantization.
These values are easily overridden.

	
quantize(qticks_notes=None, qticks_durations=None)[source]

	This method applies quantization to both note start times and note durations. If you
want either to remain unquantized, simply specify a qticks parameter to be 1 (quantization
of 1 tick).

	Parameters

	
	qticks_notes (int) – Quantization for note starts, in MIDI ticks

	qticks_durations (int) – Quantization for note durations, in MIDI ticks

	
quantize_from_note_name(min_note_duration_string, dotted_allowed=False, triplets_allowed=False)[source]

	Quantize song with more user-friendly input than ticks. Allowed quantizations are the keys for the
constants.DURATION_STR dictionary. If an input contains a ‘.’ or a ‘-3’ the corresponding
values for dotted_allowed and triplets_allowed will be overridden.

	Parameters

	
	min_note_duration_string (str) – Quantization note value

	dotted_allowed (bool) – If true, dotted notes are allowed

	triplets_allowed (bool) – If true, triplets (of the specified quantization) are allowed

	
is_quantized()[source]

	Has the song been quantized? This requires that all the tracks have been quantized
with their current qticks_notes and qticks_durations values.

	Returns

	Boolean True if all tracks in the song are quantized

	
explode_polyphony(i_track)[source]

	‘Explodes’ a single track into multi-track polyphony. The new tracks replace the old
track in the song’s list of tracks, so later tracks will be pushed to higher indexes.
The new tracks are named using the name of the original track with ‘_sx’ appended, where
x is a number for the split notes.
The polyphony is split using a first-available-track algorithm, which works well for splitting chords.

	Parameters

	i_track (int) – zero-based index of the track for the song (ignore the meta track - first track is 0)

	
remove_polyphony()[source]

	Eliminate polyphony from all tracks.

	
is_polyphonic()[source]

	Is the song polyphonic? Returns true if ANY of the tracks contains polyphony of any kind.

	Returns

	Boolean True if any track in the song is polyphonic

	Return type

	bool

	
remove_keyswitches(ks_max=8)[source]

	Some MIDI programs use extremely low notes as a signaling mechanism.
This method removes notes with pitch <= ks_max from all tracks.

	Parameters

	ks_max (int) – Maximum note number for the control notes

	
truncate(max_tick)[source]

	Truncate the song to max_tick

	Parameters

	max_tick (int) – maximum tick number for events to start (song will play to end of any
notes started)

	
transpose(semitones, minimize_accidentals=True)[source]

	Transposes the song by semitones

	Parameters

	
	semitones (int) – number of semitones to transpose by. Positive transposes to higher pitch.

	minimize_accidentals (bool) – True to choose key signature to minimize number of accidentals

	
modulate(num, denom)[source]

	This method performs metric modulation. It does so by multiplying the length of all notes by num/denom,
and also automatically adjusts the time signatures and tempos such that the resulting music will sound
identical to the original.

	Parameters

	
	num (int) – Numerator of metric modulation

	denom (int) – Denominator of metric modulation

	
scale_ticks(scale_factor)[source]

	Scales the ticks for all events in the song. Multiplies the time for each event by scale_factor.
This method also changes the ppq by the scale factor.

	Parameters

	scale_factor (float) – Floating-point scale factor to multiply all events.

	
move_ticks(offset_ticks)[source]

	Moves all notes in the song a given number of ticks. Adds the offset to the current tick for every event.
If the resulting event has a negative starting time in ticks, it is set to 0.

	Parameters

	offset_ticks (int) – Offset in ticks

	
set_qpm(qpm)[source]

	Sets the tempo in QPM for the entire song. Any existing tempo events will be removed.

	Parameters

	qpm (int) – quarter-notes per minute tempo

	
set_time_signature(num, denom)[source]

	Sets the time signature for the entire song. Any existing time signature changes will be removed.

	Parameters

	
	num –

	denom –

	
set_key_signature(new_key)[source]

	Sets the key signature for the entire song. Any existing key signatures and changes will be removed.

	Parameters

	new_key (str) – Key signature. String such as ‘A#’ or ‘Abm’

	
end_time()[source]

	Finds the end time of the last note in the song.

	Returns

	Time (in ticks) of the end of the last note in the song.

	Return type

	int

	
measure_starts()[source]

	Returns the starting time for measures in the song. Calculated using time_signature_changes.

	Returns

	List of measure starting times in MIDI ticks

	Return type

	list

	
measures_and_beats()[source]

	Returns the positions of all measures and beats in the song. Calculated using time_signature_changes.

	Returns

	List of MeasureBeat objects for each beat of the song.

	Return type

	list

	
get_measure_beat(time_in_ticks)[source]

	This method returns a (measure, beat) tuple for a given time; the time is greater than or
equal to the returned measure and beat but less than the next. The result should be
interpreted as the time being during the measure and beat returned.

	Parameters

	time_in_ticks (int) – Time during the song, in MIDI ticks

	Returns

	MeasureBeat object with the current measure and beat

	Return type

	MeasureBeat

	
get_active_time_signature(time_in_ticks)[source]

	Get the active time signature at a given time (in ticks) during the song.

	Parameters

	time_in_ticks (int) – Time during the song, in MIDI ticks

	Returns

	Active time signature at the time

	Return type

	TimeSignatureChange

	
get_active_key_signature(time_in_ticks)[source]

	Get the active key signature at a given time (in ticks) during the song.

	Parameters

	time_in_ticks (int) – Time during the song, in MIDI ticks

	Returns

	Key signature active at the time

	Return type

	KeySignatureChange

MChirp

Rest

	
class chiptunesak.base.Rest(start_time, duration)

	

Triplet

	
class chiptunesak.base.Triplet(start_time=0, duration=0)[source]

	

Measure

	
class chiptunesak.mchirp.Measure(start_time, duration)[source]

	
	
process_triplets(measure_notes, ppq)[source]

	Processes and accounts for all triplets in the measure

	Parameters

	
	measure_notes (list of notes/triplets) – list of notes in the measure

	ppq (int) – pulses per quarter from song

	Returns

	new measure contents

	Return type

	list of notes/triplet

	
populate_triplet(triplet, measure_notes)[source]

	Given a triplet, populate it from the ntoes in the measure, splitting them if required

	Parameters

	
	triplet (Triplet) – triplet to be populated

	measure_notes (list of notes) – notes in the measure

	Returns

	measure notes now including triplet

	Return type

	list of notes/triplets

	
add_rests(measure_notes)[source]

	Add rests to a measure content

	Parameters

	measure_notes (list of notes) – notes in the measure

	Returns

	new list of events including rests

	Return type

	list of events in measure

	
populate(track, carry=None)[source]

	Populates a single measure with notes, rests, and other events.

	Parameters

	
	track – Track from which events are to be imported

	carry – If last note in previous measure is continued in this measure, the note with
remaining time

	Returns

	Carry note, if last note is to be carried into the next measure.

MChirpTrack

	
class chiptunesak.mchirp.MChirpTrack(mchirp_song, chirp_track=None)[source]

	
	
measures = None

	List of measures in the track

	
name = None

	Track name

	
channel = None

	Midi channel number

	
mchirp_song = None

	parent MChirpSong

	
qticks_notes = None

	Inherit quantization from song

	
qticks_durations = None

	Inherit quantization from song

	
import_chirp_track(chirp_track)[source]

	Converts a track into measures, each of which is a sorted list of notes and other events

	Parameters

	chirp_track (ChirpTrack) – A ctsSongTrack that has been quantized and had polyphony removed

	Returns

	List of Measure objects corresponding to the measures

MChirpSong

	
class chiptunesak.mchirp.MChirpSong(chirp_song=None)[source]

	Bases: chiptunesak.base.ChiptuneSAKBase

	
metadata = None

	Metadata

	
qticks_notes = None

	Quantization for note starts, in ticks

	
qticks_durations = None

	Quantization for note durations, in ticks

	
other = None

	Other MIDI events not used in measures

	
import_chirp_song(chirp_song)[source]

	Gets all the measures from all the tracks in a song, and removes any empty (note-free) measures from the end.

	Parameters

	chirp_song (ChirpSong) – A chirp.ChirpSong song

	
trim()[source]

	Trims all note-free measures from the end of the song.

	
trim_partial_measures()[source]

	Trims any partial measures from the end of the file

	
get_time_signature(time_in_ticks)[source]

	Finds the active key signature at a given time in the song

	Parameters

	time_in_ticks –

	Returns

	The last time signature change event before the given time.

	
get_key_signature(time_in_ticks)[source]

	Finds the active key signature at a given time in the song

	Parameters

	time_in_ticks –

	Returns

	The last key signature change event before the given time.

RChirp

RChirpRow

	
class chiptunesak.rchirp.RChirpRow(row_num: int = None, milliframe_num: int = None, note_num: int = None, instr_num: int = None, new_instrument: int = None, gate: bool = None, milliframe_len: int = None, new_milliframe_tempo: int = None)[source]

	The basic RChirp row

	
row_num = None

	rchirp row number

	
milliframe_num = None

	frames / 1000 since time 0

	
note_num = None

	MIDI note number; None means no note asserted

	
instr_num = None

	Instrument number

	
new_instrument = None

	Indicates new instrument number; None means no change

	
gate = None

	Gate on/off tri-value True/False/None; None means no gate change

	
milliframe_len = None

	frames * 1000 to process this row (until next row)

	
new_milliframe_tempo = None

	Indicates new tempo for channel (not global); None means no change

RChirpOrderEntry

	
class chiptunesak.rchirp.RChirpOrderEntry(pattern_num: int = None, transposition: int = 0, repeats: int = 1)[source]

	

RChirpOrderList

	
class chiptunesak.rchirp.RChirpOrderList[source]

	An orderlist is a list of RChirpOrderEntry instances

RChirpPattern

	
class chiptunesak.rchirp.RChirpPattern(rows=None)[source]

	A pattern made up of a set of rows

	
rows = None

	List of RChirpRow instances (NOT a dictionary! No gaps allowed!)

RChirpVoice

	
class chiptunesak.rchirp.RChirpVoice(rchirp_song, chirp_track=None)[source]

	The representation of a single voice; contains rows

	
rchirp_song = None

	The song this voice belongs to

	
rows = None

	dictionary: K:row num, V: RChirpRow instance

	
milliframe_indexed_rows

	Returns dictionary of rows indexed by milliframe number

A voice holds onto a dictionary of rows keyed by row number. This method returns
a dictionary of rows keyed by milliframe number.

	Returns

	A dictionary of rows keyed by milliframe number

	Return type

	defaultdict

	
sorted_rows

	Returns a list of row-number sorted rows for the voice

	Returns

	A sorted list of RChirpRow instances

	Return type

	list

	
append_row(rchirp_row)[source]

	Appends a row to the voice’s collection of rows

This is a helper method for treating rchirp like a list of contiguous rows,
instead of a sparse dictionary of rows

	Parameters

	rchirp_row (RChirpRow) – A row to “append”

	
last_row

	Returns the row with the largest milliframe number (latest in time)

	Returns

	row with latest milliframe number

	Return type

	RChirpRow

	
next_row_num

	Returns one greater than the largest row number held onto by the voice

	Returns

	largest row number + 1

	Return type

	int

	
is_contiguous()[source]

	Determines if the voice’s rows are contiguous. This function requires that row numbers
are consecutive and that the corresponding milliframe numbers have no gaps.

	Returns

	True if rows are contiguous, False if not

	Return type

	bool

	
integrity_check()[source]

	Finds problems with a voice’s row data

	Returns

	True if all integrity checks pass

	Raises

	AssertionError – Various integrity failure assertions possible

	
make_filled_rows()[source]

	Creates a contiguous set of rows from a sparse row representation

	Returns

	filled rows

	Return type

	list of rows

	
orderlist_to_rows()[source]

	Convert an orderlist with patterns into rows

	Returns

	rows

	Return type

	list of rows

	
validate_orderlist()[source]

	Validate that the orderlist is self-consistent and generates the correct set of rows

	Returns

	True if consistent

	Return type

	bool

	
import_chirp_track(chirp_track)[source]

	
	Imports a Chirp track into a raw RChirpVoice object. No compression or conversion to patterns

	and orderlists performed. Track must be non-polyphonic and quantized.

	Parameters

	chirp_track (ChirpTrack) – A chirp track

	Raises

	
	ChiptuneSAKQuantizationError – Thrown if chirp track is not quantized

	ChiptuneSAKPolyphonyError – Thrown if a single voice contains polyphony

RChirpSong

	
class chiptunesak.rchirp.RChirpSong(chirp_song=None)[source]

	Bases: chiptunesak.base.ChiptuneSAKBase

The representation of an RChirp song. Contains voices, voice groups, and metadata.

	
arch = None

	Architecture

	
voices = None

	List of RChirpVoice instances

	
voice_groups = None

	Voice groupings for lowering to multiple chips

	
patterns = None

	Patterns to be shared among the voices

	
other = None

	Other meta-events in song

	
compressed = None

	Has song been through compression algorithm?

	
program_map = None

	Midi-to-RChirp instrument map

	
metadata = None

	Song metadata (author, copyright, etc.)

	
to_chirp(**kwargs)[source]

	Converts the RChirpSong into a ChirpSong

	Returns

	Chirp song

	Return type

	ChirpSong

	
import_chirp_song(chirp_song)[source]

	Imports a ChirpSong

	Parameters

	chirp_song (ChirpSong) – A chirp song

	Raises

	
	ChiptuneSAKQuantizationError – Thrown if chirp track is not quantized

	ChiptuneSAKPolyphonyError – Thrown if a single voice contains polyphony

	
remove_tempo_changes()[source]

	Removes tempo changes and sets milliframes_per_row constant for the entire song. This
method is used to eliminate accelerandos and ritarandos throughout the song for better
conversion to Chirp.

	Returns

	True on success

	Return type

	bool

	
has_patterns()[source]

	Does this RChirp have patterns (and thus, presumably, orderlists)?

	Returns

	True if there are patterns

	Return type

	bool

	
make_program_map(chirp_song)[source]

	Creates a program map of Chirp program numbers (patches) to instruments

	Parameters

	chirp_song (ChirpSong) – chirp song

	Returns

	program_map

	Return type

	dict of {chirp_program:rchirp_instrument}

	
is_contiguous()[source]

	Determines if the voices’ rows are contiguous, without gaps in time

	Returns

	True if rows are contiguous, False if not

	Return type

	bool

	
integrity_check()[source]

	Finds problems with voices’ row data

	Returns

	True if integrity checks pass for all voices

	Raises

	AssertionError – Various integrity failure assertions possible

	
set_row_delta_values()[source]

	RChirpRow has some delta fields that are only set when there’s a change from previous rows.

This method goes through the rows, finds those changes and sets the appropriate fields

	
milliframe_indexed_voices()[source]

	Returns a list of dicts, where many voices hold onto many rows. Rows indexed by
milliframe number.

	Returns

	a list of dicts (voices->rows)

	Return type

	list

	
note_time_data_str()[source]

	Returns a comma-separated value list representation of the rchirp data

	Returns

	CSV string

	Return type

	str

	
convert_to_chirp(**kwargs)[source]

	Convert rchirp song to chirp

	Returns

	chirp conversion

	Return type

	ChirpSong

Input/Output Classes

MIDI Class

	
class chiptunesak.midi.MIDI[source]

	Bases: chiptunesak.base.ChiptuneSAKIO

Import/Export MIDI files to and from Chirp songs.

The Chirp format is most closely tied to the MIDI standard. As a result, conversion between MIDI
files and ChirpSong objects is one of the most common ways to import and export music using the
ChiptuneSAK framework.

The MIDI class does not implement the standard to_bin() method because it uses the mido [https://mido.readthedocs.io/en/latest/] library to
process low-level midi messages, and mido only deals with MIDI files.

The Chirp framework can import both MIDI type 0 and type 1 files. It will only write MIDI type 1 files.

	
to_chirp(filename, **kwargs)[source]

	Import a midi file to Chirp format

	Parameters

	
	filename (str) – filename to import

	options –
	keyswitch (bool) Remove keyswitch notes with midi number <=8 (default True)

	polyphony (bool) Allow polyphony (removal occurs after any quantization) (default True)

	quantize (str)

	’auto’: automatically determines required quantization

	’8’, ‘16’, ‘32’, etc. : quantize to the named duration

	Returns

	chirp song

	Return type

	ChirpSong

	
to_file(song, filename, **kwargs)[source]

	Exports a ChirpSong to a midi file.

	Parameters

	
	song (chirpSong) – chirp song

	filename (str) – filename for export

	Returns

	True on success

	Return type

	bool

	
midi_track_to_chirp_track(chirp_song, midi_track)[source]

	Parse a MIDI track into notes, track name, and program changes. This method uses the mido
library for MIDI messges within the track.

	Parameters

	midi_track (MIDO midi track) – midi track

	
import_midi_to_chirp(input_filename)[source]

	Open and import a MIDI file into the ChirpSong representation. THis method can handle MIDI type 0 and 1 files.

	param input_filename

	MIDI filename.

	
get_meta(chirp_song, meta_track, is_zerotrack=False, is_metatrack=False)[source]

	Process MIDI meta messages in a track.

	param chirp_song

	

	param meta_track

	

	param is_zerotrack

	

	param is_metatrack

	

	
split_midi_zero_into_tracks(midi_song)[source]

	For MIDI Type 0 files, split the notes into tracks. To accomplish this, we
move the metadata into Track 0 and then assign tracks 1-16 to the note data.

	
chirp_track_to_midi_track(chirp_track)[source]

	Convert ChirpTrack to a midi track.

	
meta_to_midi_track(chirp_song)[source]

	Exports metadata to a MIDI track.

	
export_chirp_to_midi(chirp_song, output_filename)[source]

	Exports the song to a MIDI Type 1 file. Exporting to the midi format is privileged because this class
is tied to many midi concepts and uses midid messages explicitly for some content.

GoatTracker Class

	
class chiptunesak.goat_tracker.GoatTracker[source]

	Bases: chiptunesak.base.ChiptuneSAKIO

The IO interface for GoatTracker and GoatTracker Stereo

Supports conversions between RChirp and GoatTracker .sng format

	
set_options(**kwargs)[source]

	Sets options for this module, with validation when required

	Parameters

	kwargs (keyword arguments) – keyword arguments for options

	
to_bin(rchirp_song, **kwargs)[source]

	Convert an RChirpSong into a GoatTracker .sng file format

	Parameters

	
	rchirp_song (MChirpSong) – rchirp data

	options –
	end_with_repeat (bool) - True if song should repeat when finished

	max_pattern_len (int) - Maximum pattern length to use. Must be <= 127

	
	instruments (list of str) - Instrument names that will be extracted from GT instruments directory

	Note: These instruments are in instrument order, not in voice order! Multiple voices may use the
same instrument, or multiple instruments may be on a voice. The instrument numbers are assigned
in the order instruments are processed on conversion to RChirp.

	Returns

	sng binary file format

	Return type

	bytearray

	
to_file(rchirp_song, filename, **kwargs)[source]

	Convert and save an RChirpSong as a GoatTracker sng file

	Parameters

	
	rchirp_song (RChirpSong) – rchirp data

	filename (str) – output path and file name

	options – see to_bin()

	
to_rchirp(filename, **kwargs)[source]

	Import a GoatTracker sng file to RChirp

	Parameters

	
	filename (str) – File name of .sng file

	options –
	subtune (int) - The subtune numer to import. Defaults to 0

	arch (str) - architecture string. Must be one defined in constants.py

	Returns

	rchirp song

	Return type

	RChirpSong

SID Class

	
class chiptunesak.sid.SID[source]

	Bases: chiptunesak.base.ChiptuneSAKIO

Parses and imports SIDs into RChirp using 6502/6510 emulation with a thin C64 layer.

This class is the import interface for ChiptuneSAK for SIDs. It runs the SID in the emulator, using the
information in the SID header to configure the driver, and captures information from the interaction of the code
with the SID chip(s) following init and play calls.

The resulting data can be converted to an RChirpSong object and/or written as a csv file that has a row for each
invocation of the play routine. The csv file is useful for diagnosing how the play routine is modifying
the SID chip and helps inform choices about the conversion of the SID music to the rchirp format.

	
set_options(**kwargs)[source]

	Sets options for this module, with validation when required

Note: set_options gets called on __init__ (setting defaults), and a 2nd
time if options are to be set after object instantiation.

	Parameters

	kwargs (keyword arguments) – keyword arguments for options

See to_rchirp() for possible options

	
capture()[source]

	Captures data by emulating the SID song execution

This method calls internal methods that watch how the machine language program interacts with virtual
SID chip(s), and records these interactions on a call-by-call basis (of the play routine).

	Returns

	captured SID data as a Dump object

	Return type

	Dump

	
to_rchirp(sid_in_filename, **kwargs)[source]

	Converts a SID subtune into an RChirpSong

	Parameters

	
	sid_in_filename (str) – SID input filename

	options –
	subtune (int = 0) - subtune to extract (zero-indexed)

	vibrato_cents_margin (int = 0) - cents margin to control snapping to previous note

	tuning (int = CONCERT_A) - tuning to use,

	seconds (float = 60) - seconds to capture

	arch (string=’NTSC-C64’) - architecture. Note: overwritten if/when SID headers get parsed

	gcf_row_reduce (bool = True) - reduce rows via GCF of row-activity gaps

	create_gate_off_notes (bool = True) - allow new note starts when gate is off

	assert_gate_on_new_note (bool = True) - True => gate on event in delta rows with new notes

	always_include_freq (bool = False) - False => freq in delta rows only with new note

	verbose (bool = True) - print details to stdout

	Returns

	SID converted to RChirpSong

	Return type

	RChirpSong

	
to_csv_file(output_filename, **kwargs)[source]

	Convert a SID subtune into a CSV file

Each row of the csv file represents one call of the play routine.

	Parameters

	output_filename (str) – output CSV filename

	
get_val(val, format=None)[source]

	Used to create CSV string values when not None

	Parameters

	
	val (str or int) – str or int

	format (str, optional) – format descriptor, defaults to None

	Returns

	empty string, passed in value (with possible formatting)

	Return type

	str or int

	
get_bool(bool, true_str='on', false_str='off')[source]

	Used to create CSV string values when not None

	Parameters

	
	bool (bool) – a boolean

	true_str (str, optional) – string if true, defaults to ‘on’

	false_str (str, optional) – string if false, defaults to ‘off’

	Returns

	string description of boolean

	Return type

	str

	
reduce_rows(sid_dump, rows_with_activity)[source]

	The SidImport class samples SID chip state after each call to the play routine.
This creates 1 row per play call. For non-multispeed, in most trackers,
this would require speed 1 playback (1 frame per row), which cannot be achieved
(again, without multispeed). So this method attempts to reduce the number of
rows in the representaton. It does so by computing the greatest common divisor
for the count of inactive rows between active rows, and then eliminates the
unnecessary rows (while preserving rhythm structure).

TODO: A row in cvs output contains all channels at a point in time. A row
in rchirp contains only one channel. When not making CVS output, better
results could be achieved by computing the GCD for each voice
independently.

	Parameters

	
	sid_dump (sid.Dump) – Capture of SID chip state from the subtune

	rows_with_activity (list of lists) – a list for each SID chip with a list of “active” row numbers

	Returns

	the row granularity (the largest common factor across all periods of inactivity)

	Return type

	int

Lilypond Class

	
class chiptunesak.lilypond.Lilypond[source]

	Bases: chiptunesak.base.ChiptuneSAKIO

	
to_bin(mchirp_song, **kwargs)[source]

	Exports MChirp to lilypond text

	Parameters

	
	mchirp_song (MChirpSong) – song to export

	options –
	format (string) - format, either ‘song’ or ‘clip’

	autosort (bool) - sort tracks from highest to lowest average pitch

	measures (list) - list of contiguous measures, from one track.
Required for ‘clip’ format, ignored otherwise.

	Returns

	lilypond text

	Return type

	str

	
to_file(mchirp_song, filename, **kwargs)[source]

	Exports MChirp to lilypond source file

	Parameters

	
	mchirp_song (MChirpSong) – song to export

	filename (str) – filename to write

	options – see to_bin()

	Returns

	lilypond text

	Return type

	str

	
measure_to_lilypond(measure)[source]

	Converts contents of a measure into Lilypond text

	Parameters

	measure – A ctsMeasure.Measure object

	Returns

	Lilypond text encoding the measure content.

	
export_clip_to_lilypond(mchirp_song, measures)[source]

	Turns a set of measures into Lilypond suitable for use as a clip. All the music will be on a single line
with no margins. It is recommended that this clip be turned into Lilypond using the command line:

lilypond -ddelete-intermediate-files -dbackend=eps -dresolution=600 -dpixmap-format=pngalpha --png <filename>

	Parameters

	
	mchirp_song (MChirpSong) – ChirpSong from which the measures were taken.

	measures (list) – List of measures.

	Returns

	Lilypond markup ascii

	Return type

	str

	
export_song_to_lilypond(mchirp_song)[source]

	Converts a song to Lilypond format. Optimized for multi-page PDF output of the song.
Recommended lilypond command:

lilypond <filename>

	Parameters

	mchirp_song (MChirpSong) – ChirpSong to convert to Lilypond format

	Returns

	Lilypond markup ascii

	Return type

	str

C128 Basic Class

	
class chiptunesak.c128_basic.C128Basic[source]

	Bases: chiptunesak.base.ChiptuneSAKIO

The IO interface for C128BASIC
Supports to_bin() and to_file() conversions from mchirp to C128 BASIC
options: format, arch, instruments

	
set_options(**kwargs)[source]

	Sets the options for commodore export

	Parameters

	kwargs (keyword arguments) – keyword arguments for options

	
to_bin(mchirp_song, **kwargs)[source]

	Convert an MChirpSong into a C128 BASIC music program

	Parameters

	
	mchirp_song (MChirpSong) – mchirp data

	options – see to_file()

	Returns

	C128 BASIC program

	Return type

	str or bytearray

	
to_file(mchirp_song, filename, **kwargs)[source]

	Converts and saves MChirpSong as a C128 BASIC music program

	Parameters

	
	mchirp_song (MChirpSong) – mchirp data

	filename (str) – path and filename

	options –
	arch (str) - architecture name (see base for complete list)

	format (str) - ‘bas’ for BASIC source code or ‘prg’ for prg

	instruments (list of str) - list of 3 instruments for the three voices (in order).

	Default is [‘piano’, ‘piano’, ‘piano’]

	Supports the default C128 BASIC instruments:
0:’piano’, 1:’accordion’, 2:’calliope’, 3:’drum’, 4:’flute’,
5:’guitar’, 6:’harpsichord’, 7:’organ’, 8:’trumpet’, 9:’xylophone

	tempo_override (int) - override the computed tempo

	rem_override (string) - use passed string for leading REM statement instead of filename

	
export_mchirp_to_C128_BASIC(mchirp_song)[source]

	Convert mchirp into a C128 Basic program that plays the song.
This method is invoked via the C128Basic ChiptuneSAKIO class

	Parameters

	mchirp_song (MChirpSong) – An mchirp song

	Returns

	Returns an ascii BASIC program

	Return type

	str

ML64 Class

	
class chiptunesak.ml64.ML64[source]

	Bases: chiptunesak.base.ChiptuneSAKIO

	
to_bin(song, **kwargs)[source]

	Generates an ML64 string for a song

	Parameters

	
	song (ChirpSong or mchirp.MChirpSong) – song

	options –
	format (string) - ‘compact’, ‘standard’, or ‘measures’;
‘measures’ requires MChirp; the others convert from Chirp

	Returns

	ML64 encoding of song

	Return type

	str

	
to_file(song, filename, **kwargs)[source]

	Writes ML64 to a file

	Parameters

	
	song (ChirpSong or mchirp.MChirpSong) – song

	options – see to_bin()

	Returns

	ML64 encoding of song

	Return type

	str

	
export_chirp_to_ml64(chirp_song)[source]

	Export song to ML64 format, with a minimum number of notes, either with or without measure comments.
With measure comments, the comments appear within the measure but are not guaranteed to be exactly at the
beginning of the measure, as tied notes will take precedence. In compact mode, the ML64 emitted is almost
as small as possible.
:param chirp_song:
:type chirp_song:

	
export_mchirp_to_ml64(mchirp_song)[source]

	Export the song in ML64 format, grouping notes into measures. The measure comments are guaranteed to
appear at the beginning of each measure; tied notes will be split to accommodate the measure markers.
:param mchirp_song: An mchirp song
:type mchirp_song: MChirpSong

Compression Classes

One-Pass Class

	
class chiptunesak.one_pass_compress.OnePass[source]

	Bases: chiptunesak.base.ChiptuneSAKCompress

	
find_best_repeats(repeats)[source]

	Find the best repeats to use for a set of repeats. Right now, the metric is coverage, with the
shortest repeats that give a certain coverage used, but the metric can easily be changed.
:param repeats: list of valid repeats
:type repeats: list of Repeat objects
:return: list of optimal repeats
:rtype: list of Repeat objects

	
apply_pattern(pattern_index, repeats, order)[source]

	Given a pattern index and a set of repeats that match the pattern, mark the affected rows as used
and insert them into the temporary orderlist
:param pattern_index: Pattern number for the cstRChirpSong
:type pattern_index: int
:param repeats: Repeats that match the pattern
:type repeats: list of Repeat objects
:param order: temporary dictionary for the orderlist
:type order: dictionary of (start_row, transposition) tuples
:return: order
:rtype: orderlist dictionary

	
trim_repeats(repeats)[source]

	Trims the list of repeats to exclude rows that have been used.
:param repeats: list of all repeats
:type repeats: list of Repeat objects
:return: list of valid repeats
:rtype: list of Repeat objects

	
get_hole_lengths()[source]

	Creates list of the holes of unused rows in a set of rows.
:return:
:rtype:

	
static add_rchirp_pattern_to_song(rchirp_song, pattern)[source]

	Adds a pattern to an RChirpSong. It checks to be sue that the pattern has not been used.
:param rchirp_song: An RChirpSong
:type rchirp_song: rchirpSong
:param pattern: the pattern to add to the song
:type pattern: rchirp.RChirpPattern
:return: Index of pattern
:rtype: int

	
static make_orderlist(order)[source]

	Converts the temporary dictionary-based orderlist into an RChirp-compatible orderlist
:param order: dictionary orderlist (created internally)
:type order: dictionary of (start_row, transposition)
:return: orderlist to put into a rchirp.RChirpVoice
:rtype: rchirp.RChirpOrderList

	
static validate_orderlist(patterns, order, total_length)[source]

	Validates that the sparse orderlist is self-consistent.
:param patterns:
:type patterns:
:param order:
:type order:
:return:
:rtype: bool

One-Pass Global Class

	
class chiptunesak.one_pass_compress.OnePassGlobal[source]

	Bases: chiptunesak.one_pass_compress.OnePass

Global greedy compression algorithm for GoatTracker

This algorithm attempts to find the best repeats to compress at every iteration; it begins by finding
all possible repeats longer than min_pattern_length (which is O(n^2)) and then at each iteration
chooses the set of repeats with the highest score. The rows used are removed and the algorithm iterates.
At each iteration the available repeats are trimmed to avoid the used rows.

	
compress(rchirp_song, **kwargs)[source]

	Compresses the RChirp using a single-pass global greedy pattern detection. It finds all repeats in the song and
turns the lrgest one into a pattern. It continues this operation until the longest repeat is shorter than
min_pattern_length, after which it fills in the gaps.

	Parameters

	
	rchirp_song (rchirp.RChirpSong) – RChirp song to compress

	options –
	min_pattern_length (int) - minimum pattern length in rows

	min_transpose (int) - minimum transposition, in semitones, for a pattern to be a match (GoatTracker = -15)

	max_transpose (int) - maximum transposition, in semitones, allowed for a pattern to be a match (GoatTracker = +14)

	for no transposition, set both min_transpose and max_transpose to 0.

	Returns

	rchirp_song with compression information added

	Return type

	rchirp.RChirpSong

	
find_all_repeats(rows)[source]

	Find every possible repeat in the rows longer than a minimum length
:param rows: list of rows to search for repeats
:type rows: list of cts.RChirpRows
:return: list of all repeats found
:rtype: list of Repeat

	
compress_global(rchirp_song)[source]

	Global greedy compression algorithm for GoatTracker

This algorithm attempts to find the best repeats to compress at every iteration; it begins by finding
all possible repeats longer than min_pattern_length (which is O(n^2)) and then at each iteration
chooses the set of repeats with the highest score. The rows used are removed and the algorithm iterates.
At each iteration the available repeats are trimmed to avoid the used rows.

	Parameters

	rchirp_song (rchirp.RChirpSong) – RChirp song to compress

	Returns

	rchirp_song with compression information added

	Return type

	rchirp.RChirpSong

One-Pass Left-to-Right Class

	
class chiptunesak.one_pass_compress.OnePassLeftToRight[source]

	Bases: chiptunesak.one_pass_compress.OnePass

Left-to-right left single-pass compression for GoatTracker

This compression algorithm is the fastest; it can compress even the longest song in less than a second.
It compresses the song in a manner similar to how a GoatTracker song would be constructed; starting from the
beginning row, it finds the repeats of rows starting at that position that give the best score, and
then moves to the first gap in the remaining rows and repeats. If the algorithm does not find any suitable
repeats at a position, it moves to the next, and the unused rows are put into patterns after all the repeats
have been found.

	
compress(rchirp_song, **kwargs)[source]

	Compresses the RChirp using a single-pass left-to-right pattern detection. Starting at the first row, it
finds the longest pattern that repeats, and if it is longer than min_pattern_length it removes the pattern and
all repeats from the remaining rows. It then performs the same operation on the first available row until all
patterns have been found, and then fills in the gaps.

	Parameters

	
	rchirp_song (rchirp.RChirpSong) – RChirp song to compress

	options –
	min_pattern_length (int) - minimum pattern length in rows

	min_transpose (int) - minimum transposition, in semitones, for a pattern to be a match (GoatTracker = -15)

	max_transpose (int) - maximum transposition, in semitones, allowed for a pattern to be a match (GoatTracker = +14)

	for no transposition, set both min_transpose and max_transpose to 0.

	Returns

	rchirp_song with compression information added

	Return type

	rchirp.RChirpSong

	
compress_lr(rchirp_song)[source]

	Right-to-left single-pass compression for GoatTracker

This compression algorithm is the fastest; it can compress even the longest song in less than a second.
It compresses the song in a manner similar to how a GT song would be constructed; starting from the
beginning row, it finds the repeats of rows starting at that position that give the best score, and
then moves to the first gap in the remaining rows and repeats. If the algorithm does not find any suitable
repeats at a position, it moves to the next, and the unused rows are put into patterns after all the repeats
have been found.

	Parameters

	rchirp_song (rchirp.RChirpSong) – RChirp song to compress

	Returns

	rchirp_song with compression information added

	Return type

	rchirp.RChirpSong

Version History

Release History

0.6.0 (2020-08-28)

Initial release at CRX 2020

Development History

0.5.2 (2020-07-21)

	SID arpeggio extraction option

0.5.1 (2020-07-17)

	SID multispeed extraction

0.5.0 (2020-06-29)

	SID extraction

0.4.0 (2020-06-27)

	Package

0.3.2 (2020-06-22)

	New triplet parsing

	Expanded examples

	Frequency conversion functions added

0.3.1 (2020-06-07)

	Improved documentation

	SID header parsing

0.3.0 (2020-05-12)

	new interfaces for intermediate representations, I/O, and compression

	new class hierarchy with reflection and options

0.2.9 (2020-05-05)

	full conversion between intermediate representations

	new options architecture

0.2.8 (2020-04-30)

	Full GoatTracker instrument support

	GoatTracker instruments added

0.2.7 (2020-04-25)

	6502 simulation

0.2.6 (2020-04-15)

	6-voice stereo GoatTracker export

	Chirp to RChirp

0.2.5 (2020-04-04)

	one pass loop-based compression

0.2.4 (2020-03-20)

	RChirp 3-voice export to GoatTracker .sng files

	import GoatTracker to RChirp

0.2.3 (2020-03-15)

	RChirp to Chirp conversion

0.2.2 (2020-03-05)

	RChirp

0.2.1 (2020-02-27)

	Triplets in MChirp

0.2.0 (2020-02-24)

	FitPPQ algorithm to fit untethered MIDI

	Many new Chirp transformations

	Key signatures

	Major refactoring of MChirp and Chirp

	Import / Export to GoatTracker sng format

0.1.5 (2020-02-12)

	C128 BASIC export

	Lilypond export

0.1.4 (2020-01-15)

	ML64 export

0.1.3 (2020-01-07)

	Quantization to note names

0.1.2 (2019-12-28)

	Duration quantization algorithm

0.1.1 (2019-12-28)

	Initial commit

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | V

A

 	
 	add_rchirp_pattern_to_song() (chiptunesak.one_pass_compress.OnePass static method)

 	add_rests() (chiptunesak.mchirp.Measure method)

 	
 	append_row() (chiptunesak.rchirp.RChirpVoice method)

 	apply_pattern() (chiptunesak.one_pass_compress.OnePass method)

 	arch (chiptunesak.rchirp.RChirpSong attribute)

C

 	
 	C128Basic (class in chiptunesak.c128_basic)

 	capture() (chiptunesak.sid.SID method)

 	channel (chiptunesak.chirp.ChirpTrack attribute)

 	(chiptunesak.mchirp.MChirpTrack attribute)

 	chirp_song (chiptunesak.chirp.ChirpTrack attribute)

 	chirp_track_to_midi_track() (chiptunesak.midi.MIDI method)

 	ChirpSong (class in chiptunesak.chirp)

 	
 	ChirpTrack (class in chiptunesak.chirp)

 	compress() (chiptunesak.one_pass_compress.OnePassGlobal method)

 	(chiptunesak.one_pass_compress.OnePassLeftToRight method)

 	compress_global() (chiptunesak.one_pass_compress.OnePassGlobal method)

 	compress_lr() (chiptunesak.one_pass_compress.OnePassLeftToRight method)

 	compressed (chiptunesak.rchirp.RChirpSong attribute)

 	convert_to_chirp() (chiptunesak.rchirp.RChirpSong method)

D

 	
 	duration (chiptunesak.chirp.Note attribute)

E

 	
 	end_time() (chiptunesak.chirp.ChirpSong method)

 	estimate_quantization() (chiptunesak.chirp.ChirpSong method)

 	(chiptunesak.chirp.ChirpTrack method)

 	explode_polyphony() (chiptunesak.chirp.ChirpSong method)

 	export_chirp_to_midi() (chiptunesak.midi.MIDI method)

 	
 	export_chirp_to_ml64() (chiptunesak.ml64.ML64 method)

 	export_clip_to_lilypond() (chiptunesak.lilypond.Lilypond method)

 	export_mchirp_to_C128_BASIC() (chiptunesak.c128_basic.C128Basic method)

 	export_mchirp_to_ml64() (chiptunesak.ml64.ML64 method)

 	export_song_to_lilypond() (chiptunesak.lilypond.Lilypond method)

F

 	
 	find_all_repeats() (chiptunesak.one_pass_compress.OnePassGlobal method)

 	find_best_repeats() (chiptunesak.one_pass_compress.OnePass method)

 	
 	find_duration_quantization() (in module chiptunesak.chirp)

 	find_quantization() (in module chiptunesak.chirp)

G

 	
 	gate (chiptunesak.rchirp.RChirpRow attribute)

 	get_active_key_signature() (chiptunesak.chirp.ChirpSong method)

 	get_active_time_signature() (chiptunesak.chirp.ChirpSong method)

 	get_bool() (chiptunesak.sid.SID method)

 	get_hole_lengths() (chiptunesak.one_pass_compress.OnePass method)

 	
 	get_key_signature() (chiptunesak.mchirp.MChirpSong method)

 	get_measure_beat() (chiptunesak.chirp.ChirpSong method)

 	get_meta() (chiptunesak.midi.MIDI method)

 	get_time_signature() (chiptunesak.mchirp.MChirpSong method)

 	get_val() (chiptunesak.sid.SID method)

 	GoatTracker (class in chiptunesak.goat_tracker)

H

 	
 	has_patterns() (chiptunesak.rchirp.RChirpSong method)

I

 	
 	import_chirp_song() (chiptunesak.mchirp.MChirpSong method)

 	(chiptunesak.rchirp.RChirpSong method)

 	import_chirp_track() (chiptunesak.mchirp.MChirpTrack method)

 	(chiptunesak.rchirp.RChirpVoice method)

 	import_mchirp_song() (chiptunesak.chirp.ChirpSong method)

 	import_mchirp_track() (chiptunesak.chirp.ChirpTrack method)

 	import_midi_to_chirp() (chiptunesak.midi.MIDI method)

 	instr_num (chiptunesak.rchirp.RChirpRow attribute)

 	
 	integrity_check() (chiptunesak.rchirp.RChirpSong method)

 	(chiptunesak.rchirp.RChirpVoice method)

 	is_contiguous() (chiptunesak.rchirp.RChirpSong method)

 	(chiptunesak.rchirp.RChirpVoice method)

 	is_polyphonic() (chiptunesak.chirp.ChirpSong method)

 	(chiptunesak.chirp.ChirpTrack method)

 	is_quantized() (chiptunesak.chirp.ChirpSong method)

 	(chiptunesak.chirp.ChirpTrack method)

K

 	
 	key_signature_changes (chiptunesak.chirp.ChirpSong attribute)

L

 	
 	last_row (chiptunesak.rchirp.RChirpVoice attribute)

 	
 	Lilypond (class in chiptunesak.lilypond)

M

 	
 	make_filled_rows() (chiptunesak.rchirp.RChirpVoice method)

 	make_orderlist() (chiptunesak.one_pass_compress.OnePass static method)

 	make_program_map() (chiptunesak.rchirp.RChirpSong method)

 	mchirp_song (chiptunesak.mchirp.MChirpTrack attribute)

 	MChirpSong (class in chiptunesak.mchirp)

 	MChirpTrack (class in chiptunesak.mchirp)

 	Measure (class in chiptunesak.mchirp)

 	measure_starts() (chiptunesak.chirp.ChirpSong method)

 	measure_to_lilypond() (chiptunesak.lilypond.Lilypond method)

 	measures (chiptunesak.mchirp.MChirpTrack attribute)

 	measures_and_beats() (chiptunesak.chirp.ChirpSong method)

 	merge_notes() (chiptunesak.chirp.ChirpTrack method)

 	meta_to_midi_track() (chiptunesak.midi.MIDI method)

 	metadata (chiptunesak.mchirp.MChirpSong attribute)

 	(chiptunesak.rchirp.RChirpSong attribute)

 	
 	MIDI (class in chiptunesak.midi)

 	midi_meta_tracks (chiptunesak.chirp.ChirpSong attribute)

 	midi_note_tracks (chiptunesak.chirp.ChirpSong attribute)

 	midi_track_to_chirp_track() (chiptunesak.midi.MIDI method)

 	milliframe_indexed_rows (chiptunesak.rchirp.RChirpVoice attribute)

 	milliframe_indexed_voices() (chiptunesak.rchirp.RChirpSong method)

 	milliframe_len (chiptunesak.rchirp.RChirpRow attribute)

 	milliframe_num (chiptunesak.rchirp.RChirpRow attribute)

 	ML64 (class in chiptunesak.ml64)

 	modulate() (chiptunesak.chirp.ChirpSong method)

 	(chiptunesak.chirp.ChirpTrack method)

 	move_ticks() (chiptunesak.chirp.ChirpSong method)

 	(chiptunesak.chirp.ChirpTrack method)

N

 	
 	name (chiptunesak.chirp.ChirpTrack attribute)

 	(chiptunesak.mchirp.MChirpTrack attribute)

 	new_instrument (chiptunesak.rchirp.RChirpRow attribute)

 	new_milliframe_tempo (chiptunesak.rchirp.RChirpRow attribute)

 	next_row_num (chiptunesak.rchirp.RChirpVoice attribute)

 	
 	Note (class in chiptunesak.chirp)

 	note_num (chiptunesak.chirp.Note attribute)

 	(chiptunesak.rchirp.RChirpRow attribute)

 	note_time_data_str() (chiptunesak.rchirp.RChirpSong method)

 	notes (chiptunesak.chirp.ChirpTrack attribute)

O

 	
 	OnePass (class in chiptunesak.one_pass_compress)

 	OnePassGlobal (class in chiptunesak.one_pass_compress)

 	OnePassLeftToRight (class in chiptunesak.one_pass_compress)

 	orderlist_to_rows() (chiptunesak.rchirp.RChirpVoice method)

 	
 	other (chiptunesak.chirp.ChirpSong attribute)

 	(chiptunesak.chirp.ChirpTrack attribute)

 	(chiptunesak.mchirp.MChirpSong attribute)

 	(chiptunesak.rchirp.RChirpSong attribute)

P

 	
 	patterns (chiptunesak.rchirp.RChirpSong attribute)

 	populate() (chiptunesak.mchirp.Measure method)

 	populate_triplet() (chiptunesak.mchirp.Measure method)

 	
 	process_triplets() (chiptunesak.mchirp.Measure method)

 	program_changes (chiptunesak.chirp.ChirpTrack attribute)

 	program_map (chiptunesak.rchirp.RChirpSong attribute)

Q

 	
 	qticks_durations (chiptunesak.chirp.ChirpSong attribute)

 	(chiptunesak.chirp.ChirpTrack attribute)

 	(chiptunesak.mchirp.MChirpSong attribute)

 	(chiptunesak.mchirp.MChirpTrack attribute)

 	qticks_notes (chiptunesak.chirp.ChirpSong attribute)

 	(chiptunesak.chirp.ChirpTrack attribute)

 	(chiptunesak.mchirp.MChirpSong attribute)

 	(chiptunesak.mchirp.MChirpTrack attribute)

 	
 	quantize() (chiptunesak.chirp.ChirpSong method)

 	(chiptunesak.chirp.ChirpTrack method)

 	quantize_fn() (in module chiptunesak.chirp)

 	quantize_from_note_name() (chiptunesak.chirp.ChirpSong method)

 	quantize_long() (chiptunesak.chirp.ChirpTrack method)

R

 	
 	rchirp_song (chiptunesak.rchirp.RChirpVoice attribute)

 	RChirpOrderEntry (class in chiptunesak.rchirp)

 	RChirpOrderList (class in chiptunesak.rchirp)

 	RChirpPattern (class in chiptunesak.rchirp)

 	RChirpRow (class in chiptunesak.rchirp)

 	RChirpSong (class in chiptunesak.rchirp)

 	RChirpVoice (class in chiptunesak.rchirp)

 	reduce_rows() (chiptunesak.sid.SID method)

 	remove_keyswitches() (chiptunesak.chirp.ChirpSong method)

 	(chiptunesak.chirp.ChirpTrack method)

 	
 	remove_polyphony() (chiptunesak.chirp.ChirpSong method)

 	(chiptunesak.chirp.ChirpTrack method)

 	remove_short_notes() (chiptunesak.chirp.ChirpTrack method)

 	remove_tempo_changes() (chiptunesak.rchirp.RChirpSong method)

 	reset_all() (chiptunesak.chirp.ChirpSong method)

 	Rest (class in chiptunesak.base)

 	row_num (chiptunesak.rchirp.RChirpRow attribute)

 	rows (chiptunesak.rchirp.RChirpPattern attribute)

 	(chiptunesak.rchirp.RChirpVoice attribute)

S

 	
 	scale_ticks() (chiptunesak.chirp.ChirpSong method)

 	(chiptunesak.chirp.ChirpTrack method)

 	set_key_signature() (chiptunesak.chirp.ChirpSong method)

 	set_metadata() (chiptunesak.chirp.ChirpSong method)

 	set_min_note_len() (chiptunesak.chirp.ChirpTrack method)

 	set_options() (chiptunesak.c128_basic.C128Basic method)

 	(chiptunesak.goat_tracker.GoatTracker method)

 	(chiptunesak.sid.SID method)

 	
 	set_program() (chiptunesak.chirp.ChirpTrack method)

 	set_qpm() (chiptunesak.chirp.ChirpSong method)

 	set_row_delta_values() (chiptunesak.rchirp.RChirpSong method)

 	set_time_signature() (chiptunesak.chirp.ChirpSong method)

 	SID (class in chiptunesak.sid)

 	sorted_rows (chiptunesak.rchirp.RChirpVoice attribute)

 	split() (chiptunesak.chirp.Note method)

 	split_midi_zero_into_tracks() (chiptunesak.midi.MIDI method)

 	start_time (chiptunesak.chirp.Note attribute)

T

 	
 	tempo_changes (chiptunesak.chirp.ChirpSong attribute)

 	tied_from (chiptunesak.chirp.Note attribute)

 	tied_to (chiptunesak.chirp.Note attribute)

 	time_signature_changes (chiptunesak.chirp.ChirpSong attribute)

 	to_bin() (chiptunesak.c128_basic.C128Basic method)

 	(chiptunesak.goat_tracker.GoatTracker method)

 	(chiptunesak.lilypond.Lilypond method)

 	(chiptunesak.ml64.ML64 method)

 	to_chirp() (chiptunesak.midi.MIDI method)

 	(chiptunesak.rchirp.RChirpSong method)

 	to_csv_file() (chiptunesak.sid.SID method)

 	to_file() (chiptunesak.c128_basic.C128Basic method)

 	(chiptunesak.goat_tracker.GoatTracker method)

 	(chiptunesak.lilypond.Lilypond method)

 	(chiptunesak.midi.MIDI method)

 	(chiptunesak.ml64.ML64 method)

 	
 	to_mchirp() (chiptunesak.chirp.ChirpSong method)

 	to_rchirp() (chiptunesak.chirp.ChirpSong method)

 	(chiptunesak.goat_tracker.GoatTracker method)

 	(chiptunesak.sid.SID method)

 	tracks (chiptunesak.chirp.ChirpSong attribute)

 	transpose() (chiptunesak.chirp.ChirpSong method)

 	(chiptunesak.chirp.ChirpTrack method)

 	trim() (chiptunesak.mchirp.MChirpSong method)

 	trim_partial_measures() (chiptunesak.mchirp.MChirpSong method)

 	trim_repeats() (chiptunesak.one_pass_compress.OnePass method)

 	Triplet (class in chiptunesak.base)

 	truncate() (chiptunesak.chirp.ChirpSong method)

 	(chiptunesak.chirp.ChirpTrack method)

V

 	
 	validate_orderlist() (chiptunesak.one_pass_compress.OnePass static method)

 	(chiptunesak.rchirp.RChirpVoice method)

 	
 	velocity (chiptunesak.chirp.Note attribute)

 	voice_groups (chiptunesak.rchirp.RChirpSong attribute)

 	voices (chiptunesak.rchirp.RChirpSong attribute)

 All modules for which code is available

	chiptunesak.base

	chiptunesak.c128_basic

	chiptunesak.chirp

	chiptunesak.goat_tracker

	chiptunesak.lilypond

	chiptunesak.mchirp

	chiptunesak.midi

	chiptunesak.ml64

	chiptunesak.one_pass_compress

	chiptunesak.rchirp

	chiptunesak.sid

 Source code for chiptunesak.base

import re
import collections
from dataclasses import dataclass, field
from fractions import Fraction
from chiptunesak.errors import *
from chiptunesak import constants, key

Named tuple types for several lists throughout
TimeSignatureEvent = collections.namedtuple('TimeSignature', ['start_time', 'num', 'denom'])
KeySignatureEvent = collections.namedtuple('KeySignature', ['start_time', 'key'])
TempoEvent = collections.namedtuple('Tempo', ['start_time', 'qpm'])
OtherMidiEvent = collections.namedtuple('OtherMidi', ['start_time', 'msg'])
ProgramEvent = collections.namedtuple('Program', ['start_time', 'program'])
Beat = collections.namedtuple('Beat', ['start_time', 'measure', 'beat'])
Rest = collections.namedtuple('Rest', ['start_time', 'duration'])
MeasureMarker = collections.namedtuple('MeasureMarker', ['start_time', 'measure_number'])

@dataclass
class SongMetadata:
 ppq: int = constants.DEFAULT_MIDI_PPQN #: PPQ = Pulses Per Quarter = ticks/quarter note
 name: str = '' #: Song name
 composer: str = '' #: Composer
 copyright: str = '' #: Copyright statement
 time_signature: TimeSignatureEvent = TimeSignatureEvent(0, 4, 4) #: Starting time signature
 key_signature: KeySignatureEvent = KeySignatureEvent(0, key.ChirpKey('C')) #: Starting key signature
 qpm: int = 112 #: Tempo in Quarter Notes per Minute (QPM)
 extensions: dict = field(default_factory=dict) #: Allows arbitrary state to be passed

[docs]class Triplet:
 def __init__(self, start_time=0, duration=0):
 self.start_time = start_time #: Start time for the triplet as a whole
 self.duration = duration #: Duration for the entire triplet
 self.content = [] #: The notes that go inside the triplet

class ChiptuneSAKBase:
 @classmethod
 def cts_type(cls):
 return 'ChiptuneSAKBase'

 def __init__(self):
 self._options = {}

 def get_option(self, arg, default=None):
 """
 Get an option

 :param arg: option name
 :type arg: str
 :param default: default value
 :type default: type of option
 :return: value of option
 :rtype: option type
 """
 if arg in self._options:
 return self._options[arg]
 return default

 def get_options(self):
 """
 Get a dictionary of all current options

 :return: options
 :rtype: dict
 """
 return self._options

 def set_options(self, **kwargs):
 """
 Set options. All option keywords are converted to lowercase.

 :param kwargs: options
 :type kwargs: keyword options
 """
 for op, val in kwargs.items():
 self._options[op.lower()] = val

class ChiptuneSAKIR(ChiptuneSAKBase):
 @classmethod
 def cts_type(cls):
 return 'IR'

 def __init__(self):
 ChiptuneSAKBase.__init__(self)

 def to_chirp(self, **kwargs):
 """
 Converts a song to Chirp IR

 :param kwargs: Keyword options for the particular IR conversion
 :return: chirp song
 :rtype: ChirpSong
 """
 raise ChiptuneSAKNotImplemented("Conversion to Chirp not implemented")

 def to_mchirp(self, **kwargs):
 """
 Converts a song to MChirp IR

 :param kwargs: Keyword options for the particular IR conversion
 :return: chirp song
 :rtype: MChirpSong
 """
 raise ChiptuneSAKNotImplemented("Conversion to MChirp not implemented")

 def to_rchirp(self, **kwargs):
 """
 Converts a song to RChirp IR

 :param kwargs: Keyword options for the particular IR conversion
 :return: chirp song
 :rtype: rchirp.RChirpSong
 """
 raise ChiptuneSAKNotImplemented("Conversion to RChirp not implemented")

[docs]class ChiptuneSAKIO(ChiptuneSAKBase):
 @classmethod
 def cts_type(cls):
 return 'IO'

 def __init__(self):
 ChiptuneSAKBase.__init__(self)

[docs] def to_chirp(self, filename, **kwargs):
 """
 Imports a file into a ChirpSong

 :param filename: filename to import
 :type filename: str
 :param kwargs: Keyword options for the particular I/O class
 :return: Chirp song
 :rtype: ChirpSong object
 """
 raise ChiptuneSAKNotImplemented(f"Not implemented")

[docs] def to_rchirp(self, filename, **kwargs):
 """
 Imports a file into an RChirpSong

 :param filename: filename to import
 :type filename: str
 :param kwargs: Keyword options for the particular I/O class
 :return: RChirp song
 :rtype: rchirp.RChirpSong object
 """
 raise ChiptuneSAKNotImplemented(f"Not implemented")

[docs] def to_mchirp(self, filename, **kwargs):
 """
 Imports a file into a ChirpSong

 :param filename: filename to import
 :type filename: str
 :param kwargs: Keyword options for the particular I/O class
 :return: MChirp song
 :rtype: MChirpSong object
 """
 raise ChiptuneSAKNotImplemented(f"Not implemented")

[docs] def to_bin(self, ir_song, **kwargs):
 """
 Outputs a song into the desired binary format (which may be ASCII text)

 :param ir_song: song to export
 :type ir_song: ChirpSong, MChirpSong, or RChirpSong
 :param kwargs: Keyword options for the particular I/O class
 :return: binary
 :rtype: either str or bytearray, depending on the output
 """
 raise ChiptuneSAKNotImplemented(f"Not implemented for type {ir_song.cts_type()}")

[docs] def to_file(self, ir_song, filename, **kwargs):
 """
 Writes a song to a file

 :param ir_song: song to export
 :type ir_song: ChirpSong, MChirpSong, or RChirpSong
 :param filename: Name of output file
 :type filename: str
 :param kwargs: Keyword options for the particular I/O class
 :return: True on success
 :rtype: bool
 """
 raise ChiptuneSAKNotImplemented(f"Not implemented for type {ir_song.cts_type()}")

class ChiptuneSAKCompress(ChiptuneSAKBase):
 @classmethod
 def cts_type(cls):
 return 'Compress'

 def __init__(self):
 ChiptuneSAKBase.__init__(self)

 def compress(self, rchirp_song, **kwargs):
 """
 Compresses an rchirp song

 :param rchirp_song: song to compress
 :type rchirp_song: rchirp.RChirpSong
 :param kwargs: Keyword options for the particular compression class
 :return: rchirp_song with compression
 :rtype: rchirp.RChirpSong
 """
 raise ChiptuneSAKNotImplemented(f"Not implemented")

--
#
Utility functions
#
--

def duration_to_note_name(duration, ppq, locale='US'):
 """
 Given a ppq (pulses per quarter note) convert a duration to a human readable note length,
 e.g., 'eighth'
 Works for notes, dotted notes, and triplets down to sixty-fourth notes.

 :param duration: a duration in ticks
 :type duration: int
 :param ppq: pulses per quarter note (e.g. 960)
 :type ppq: int
 :param locale: 'US' or 'UK'
 :type locale: str
 :return: note description
 :rtype: str
 """
 f = Fraction(duration / ppq).limit_denominator(64)
 return constants.DURATIONS[locale.upper()].get(f, '<unknown>')

def pitch_to_note_name(note_num, octave_offset=0):
 """
 Gets note name for a given MIDI pitch

 :param note_num: a midi note number
 :type note_num: int
 :param octave_offset: value that shifts one or more octaves up or down
 :type octave_offset: int
 :return: string representation of note and octave
 :rtype: str
 """
 if not 0 <= note_num <= 127:
 raise ChiptuneSAKValueError("Illegal note number %d" % note_num)
 octave = (note_num // 12) + octave_offset - 1
 pitch = note_num % 12
 return "%s%d" % (constants.PITCHES[pitch], octave)

Regular expression for matching note names
note_name_format = re.compile('^([A-G])(#|##|b|bb)?(-{0,1}[0-7])$')

def note_name_to_pitch(note_name, octave_offset=0):
 """
 Returns MIDI note number for a named pitch. C4 = 60
 Includes processing of enharmonic notes (double sharps or double flats)

 :param note_name: A note name as a string, e.g. C#4
 :type note_name: str
 :param octave_offset: Octave offset
 :type octave_offset: int
 :return: Midi note number
 :rtype: int
 """
 if note_name_format.match(note_name) is None:
 raise ChiptuneSAKValueError('Illegal note name: "%s"' % note_name)
 m = note_name_format.match(note_name)
 note_name = m.group(1)
 accidentals = m.group(2)
 octave = int(m.group(3)) - octave_offset + 1
 note_num = constants.PITCHES.index(note_name) + 12 * octave
 if accidentals is not None:
 note_num += accidentals.count('#')
 note_num -= accidentals.count('b')
 return note_num

def decompose_duration(duration, ppq, allowed_durations):
 """
 Decomposes a given duration into a sum of allowed durations.
 This function uses a greedy algorithm, which iteratively finds the largest allowed duration shorter than
 the remaining duration and subtracts it from the remaining duration

 :param duration: Duration to be decomposed, in ticks.
 :type duration: int
 :param ppq: Ticks per quarter note.
 :type ppq: int
 :param allowed_durations: Dictionary of allowed durations. Allowed durations are expressed as fractions
 of a quarter note.
 :type allowed_durations: Dictionary (or set) of Fractions
 :return: List of decomposed durations
 :rtype: list of Fraction
 """
 ret_durations = []
 min_allowed_duration = min(allowed_durations)
 remainder = duration
 while remainder > 0:
 if remainder < min_allowed_duration * ppq:
 raise ChiptuneSAKValueError("Illegal note duration %d" % duration)
 for d in sorted(allowed_durations, reverse=True):
 if remainder >= d * ppq:
 ret_durations.append(d)
 remainder -= d * ppq
 break
 return ret_durations

def is_triplet(note, ppq):
 """
 Determine if note is a triplet, which is true if the note length divided by the quarter-note length has a
 denominator divisible by 3

 :param note: note
 :type note: chirp.Note
 :param ppq: ppq
 :type ppq: int
 :return: True of the note is a triplet type
 :rtype: bool
 """
 f = Fraction(note.duration / ppq).limit_denominator(16)
 if f.denominator % 3 == 0:
 return True
 return False

def start_beat_type(time, ppq):
 """
 Gets the beat type that would have to be used to make this note an integral number of beats
 from the start of the measure

 :param time: Time in ticks from the start of the measure.
 :type time: int
 :param ppq: ppq for the song
 :type ppq: int
 :return: Denominator that would have to be used to make this note an integral number of beats
 from the start of the measure. If the note is a triplet not starting on the beat it
 will be a multiple of 3.
 :rtype: int
 """
 f = Fraction(time, ppq).limit_denominator(32)
 return f.denominator

 Source code for chiptunesak.c128_basic

Lower MChirp to C128 BASIC PLAY commands

import collections
from chiptunesak import constants
from chiptunesak import base
from chiptunesak import gen_prg
from chiptunesak import chirp
from chiptunesak.errors import ChiptuneSAKValueError, ChiptuneSAKContentError

WHOLE_NOTE = 1152 # counter found in the PLAY routines in the BASIC ROM

These are the defaults that can be overwritten by the BASIC ENVELOPE command
Note: waveform (WF) is a little different in the BASIC, it's
0=triangle, 1=sawtooth, 2=pulse, 3=noise, and 4=ring modulation
C128_INSTRUMENTS = {
 'piano': 0, # ADSR 0, 9, 0, 0, WF 2, PW 1536
 'accordion': 1, # ADSR 12, 0, 12, 0, WF 1
 'calliope': 2, # ADSR 0, 0, 15, 0, WF 0
 'drum': 3, # ADSR 0, 5, 5, 0, WF 3
 'flute': 4, # ADSR 9, 4, 4, 0, WF 0
 'guitar': 5, # ADSR 0, 9, 2, 1, WF 1
 'harpsichord': 6, # ADSR 0, 9, 0, 0, WF 2, PW 512
 'organ': 7, # ADSR 0, 9, 9, 0, WF 2, PW 2048
 'trumpet': 8, # ADSR 8, 9, 4, 1, WF 2, PW 512
 'xylophone': 9, # ADSR 0, 9, 0, 0, WF 0
}

These types are similar to standard notes and rests but with voice added
BasicNote = collections.namedtuple('BasicNote', ['start_time', 'note_num', 'duration', 'voice'])
BasicRest = collections.namedtuple('BasicRest', ['start_time', 'duration', 'voice'])

These appear to be the only allowed note durations for C128 BASIC
basic_durations = {
 constants.Fraction(6, 1): "w.", constants.Fraction(4, 1): 'w',
 constants.Fraction(3, 1): 'h.', constants.Fraction(2, 1): 'h',
 constants.Fraction(3, 2): 'q.', constants.Fraction(1, 1): 'q',
 constants.Fraction(3, 4): 'i.', constants.Fraction(1, 2): 'i',
 constants.Fraction(1, 4): 's'
}

[docs]class C128Basic(base.ChiptuneSAKIO):
 """
 The IO interface for C128BASIC
 Supports to_bin() and to_file() conversions from mchirp to C128 BASIC
 options: format, arch, instruments
 """
 @classmethod
 def cts_type(cls):
 return 'C128Basic'

 def __init__(self):
 base.ChiptuneSAKIO.__init__(self)
 self.set_options(format='prg',
 arch=constants.DEFAULT_ARCH,
 instruments=['piano', 'piano', 'piano'])

[docs] def set_options(self, **kwargs):
 """
 Sets the options for commodore export

 :param kwargs: keyword arguments for options
 :type kwargs: keyword arguments
 """
 for op, value in kwargs.items():
 op = op.lower() # All option names must be lowercase
 if op not in ['arch', 'format', 'instruments', 'tempo_override', 'rem_override']:
 raise ChiptuneSAKValueError(f'Error: unknown option "{op}"')

 if op == 'arch':
 if value not in constants.ARCH.keys():
 raise ChiptuneSAKValueError(f"Error: Invalid architecture setting {value}")
 elif op == 'format':
 if value == 'ascii':
 value = 'bas'
 if value not in ['prg', 'bas']:
 ChiptuneSAKValueError(f"Error: Invalid format setting {value}")
 elif op == 'instruments':
 if len(value) != 3:
 raise ChiptuneSAKValueError("Error: 3 instruments required for C128")
 value = [v.lower() for v in value]
 if any(v not in C128_INSTRUMENTS for v in value):
 raise ChiptuneSAKValueError("Error: Illegal instrument name(s)")
 elif op == 'tempo_override':
 if not 1 <= value <= 255:
 # Note: some Commodore manuals erroneously show 0 as the slowest
 # tempo. "TEMPO 0" will throw a BASIC illegal quantity error.
 raise ChiptuneSAKContentError("Error: tempo must be between 1 and 255")
 elif op == 'rem_override':
 value = value[:72].lower()

 self._options[op] = value

[docs] def to_bin(self, mchirp_song, **kwargs):
 """
 Convert an MChirpSong into a C128 BASIC music program

 :param mchirp_song: mchirp data
 :type mchirp_song: MChirpSong
 :return: C128 BASIC program
 :rtype: str or bytearray

 :keyword options: see `to_file()`
 """
 self.set_options(**kwargs)
 if mchirp_song.cts_type() != 'MChirp':
 raise Exception("Error: C128Basic to_bin() only supports mchirp so far")

 ascii_prog = self.export_mchirp_to_C128_BASIC(mchirp_song)

 if self.get_option('format') == 'bas':
 return ascii_prog

 tokenized_program = gen_prg.ascii_to_prg_c128(ascii_prog)
 return tokenized_program

[docs] def to_file(self, mchirp_song, filename, **kwargs):
 """
 Converts and saves MChirpSong as a C128 BASIC music program

 :param mchirp_song: mchirp data
 :type mchirp_song: MChirpSong
 :param filename: path and filename
 :type filename: str

 :keyword options:
 * **arch** (str) - architecture name (see base for complete list)

 * **format** (str) - 'bas' for BASIC source code or 'prg' for prg

 * **instruments** (list of str) - list of 3 instruments for the three voices (in order).

 - Default is ['piano', 'piano', 'piano']
 - Supports the default C128 BASIC instruments:
 0:'piano', 1:'accordion', 2:'calliope', 3:'drum', 4:'flute',
 5:'guitar', 6:'harpsichord', 7:'organ', 8:'trumpet', 9:'xylophone

 * **tempo_override** (int) - override the computed tempo

 * **rem_override** (string) - use passed string for leading REM statement instead of filename
 """
 prog = self.to_bin(mchirp_song, **kwargs)

 if self.get_option('format') == 'bas':
 with open(filename, 'w') as out_file:
 out_file.write(prog)
 else: # 'prg'
 with open(filename, 'wb') as out_file:
 out_file.write(prog)

[docs] def export_mchirp_to_C128_BASIC(self, mchirp_song):
 """
 Convert mchirp into a C128 Basic program that plays the song.
 This method is invoked via the C128Basic ChiptuneSAKIO class

 :param mchirp_song: An mchirp song
 :type mchirp_song: MChirpSong
 :return: Returns an ascii BASIC program
 :rtype: str
 """
 basic_strings = measures_to_basic(mchirp_song)

 result = []
 current_line = 10

 if self.get_option('rem_override'):
 rem_desc = self.get_option('rem_override')
 else:
 rem_desc = mchirp_song.metadata.name.lower()

 result.append('%d rem %s' % (current_line, rem_desc))
 current_line += 10

 # Tempo 1 is slowest, and 255 is fastest
 if self.get_option('tempo_override'):
 tempo = self.get_option('tempo_override')
 else:
 tempo = (mchirp_song.metadata.qpm * WHOLE_NOTE
 / constants.ARCH[self.get_option('arch')].frame_rate / 60 / 4)
 tempo = int(round(tempo))

 result.append('%d tempo %d' % (current_line, tempo))

 current_line = 100
 for measure_num, s in enumerate(basic_strings):
 tmp_line = '%d %s$="%s"' % (current_line, num_to_str_name(measure_num), s)
 if len(tmp_line) >= constants.BASIC_LINE_MAX_C128:
 # it's ok if space removed between line number and first character
 tmp_line = tmp_line.replace(" ", "")
 # If the line is still too long...
 if len(tmp_line) >= constants.BASIC_LINE_MAX_C128:
 raise ChiptuneSAKContentError(
 "C128 BASIC line too long: Line %d length %d" % (current_line, len(tmp_line)))
 result.append(tmp_line)

 current_line += 10

 current_line = 7000 # data might reach line 6740
 volume = 9
 # FUTURE: For each voice, provide a way to pick (or override) the default envelopes
 instr_assign = 'u%dv1t%dv2t%dv3t%d' % \
 (volume, *(C128_INSTRUMENTS[inst] for inst in self.get_option('instruments')))
 result.append('%d play"%s":rem init instruments' % (current_line, instr_assign))
 current_line += 10

 # FUTURE: Using FILTER command likely out of scope, but could be added as another option:
 """
 FILTER [freq] [,lp] [,bp] [,hp] [,res]
 "Xn" in PLAY: Filter on (n=1), off (n=0)
 """

 # Create the PLAY lines at the end (like an orderlist for string patterns)
 # TODO: Can later repeat a measure by PLAYing its string more than once to
 # achieve measure-level compression
 PLAYS_PER_LINE = 8
 line_buf = []
 for measure_num in range(len(basic_strings)):
 if measure_num != 0 and measure_num % PLAYS_PER_LINE == 0:
 result.append('%d %s' % (current_line, ':'.join(line_buf)))
 line_buf = []
 current_line += 10
 line_buf.append("play %s$" % (num_to_str_name(measure_num)))

 if len(line_buf) > 0:
 result.append('%d %s' % (current_line, ':'.join(line_buf)))
 current_line += 10

 return '\n'.join(result)

def sort_order(c):
 """
 Sort function for measure contents.
 Items are sorted by time and then, for equal times, by duration (decreasing) and voice

 :return: 3-tuple used for sorting
 :rtype: tuple
 """
 if isinstance(c, BasicNote):
 return (c.start_time, -c.duration, c.voice)
 elif isinstance(c, BasicRest):
 return (c.start_time, -c.duration, c.voice)

def pitch_to_basic_note_name(note_num, octave_offset=0):
 """
 Gets note name for a given MIDI pitch

 :return: note name string and octave number
 :rtype: str, int
 """
 note_name = base.pitch_to_note_name(note_num)[::-1] # Reverse the note name
 return note_name[1:], note_name[0]

def duration_to_basic_name(duration, ppq):
 """
 Gets a note duration name for a given duration.

 :param duration: duration
 :type duration: int
 :param ppq: ppq (midi pulses per quarter note)
 :type ppq: int
 :return: C128 BASIC name for the duration
 :rtype: str
 """
 f = constants.Fraction(duration / ppq).limit_denominator(16)
 if f not in basic_durations:
 raise ChiptuneSAKValueError("Illegal note duration %s" % str(f))
 return basic_durations[f]

def trim_note_lengths(song):
 """
 Trims the note lengths in a ChirpSong to only those allowed in C128 Basic
 """
 for i_t, t in enumerate(song.tracks):
 for i_n, n in enumerate(t.notes):
 f = constants.Fraction(n.duration / song.metadata.ppq).limit_denominator(8)
 if f not in basic_durations:
 for d in sorted(basic_durations, reverse=True):
 if f >= d:
 n.duration = d * song.metadata.ppq
 break
 song.tracks[i_t].notes[i_n] = n # Trim the note in place

def measures_to_basic(mchirp_song):
 """
 Converts an MChirpSong to C128 Basic command strings.
 :param mchirp_song:
 :return:
 """
 commands = []
 n_measures = len(mchirp_song.tracks[0].measures) # in mchirp, all tracks have the same number of measures.
 last_voice = 0
 last_octave = -10
 last_duration = 0
 ppq = mchirp_song.metadata.ppq
 for im in range(n_measures):
 contents = []
 # Combine events from all three voices into a single list corresponding to the measure
 for v in range(min(3, len(mchirp_song.tracks))):
 m = mchirp_song.tracks[v].measures[im]
 # If the voice doesn't have any notes in the measure, just ignore it.
 note_count = sum(1 for e in m.events if isinstance(e, chirp.Note))
 if note_count == 0:
 continue

 # Extract the notes and rests and put them into a list.
 for e in m.events:
 if isinstance(e, chirp.Note):
 if not e.tied_to:
 start_time = e.start_time
 for d in base.decompose_duration(e.duration, ppq, basic_durations):
 contents.append(BasicNote(start_time, e.note_num, d * ppq, v + 1))
 start_time += d * ppq
 else:
 start_time = e.start_time
 for d in base.decompose_duration(e.duration, ppq, basic_durations):
 contents.append(BasicRest(start_time, d * ppq, v + 1))
 start_time += d * ppq
 elif isinstance(e, base.Rest):
 start_time = e.start_time
 for d in base.decompose_duration(e.duration, ppq, basic_durations):
 contents.append(BasicRest(start_time, d * ppq, v + 1))
 start_time += d * ppq

 # Use the sort order to sort all the events in the measure
 contents.sort(key=sort_order)
 measure_commands = []
 # Last voice gets reset at the start of each measure.
 last_voice = 0
 for e in contents:
 # We only care about notes and rests. For now.
 if isinstance(e, BasicNote):
 d_name = duration_to_basic_name(e.duration, mchirp_song.metadata.ppq)
 note_name, octave = pitch_to_basic_note_name(e.note_num)
 current_command = [] # Build the command for this note
 if e.voice != last_voice:
 current_command.append(' v%d' % e.voice)
 if octave != last_octave:
 current_command.append('o%s' % octave)
 if e.duration != last_duration:
 current_command.append(d_name)
 current_command.append(note_name.lower())
 measure_commands.append(''.join(current_command))
 # Set all the state variables
 last_voice = e.voice
 last_octave = octave
 last_duration = e.duration
 elif isinstance(e, BasicRest):
 d_name = duration_to_basic_name(e.duration, mchirp_song.metadata.ppq)
 current_command = []
 if e.voice != last_voice:
 current_command.append(' v%d' % e.voice)
 if e.duration != last_duration:
 current_command.append(d_name)
 current_command.append('r')
 measure_commands.append(''.join(current_command))
 # Set the state variables
 last_voice = e.voice
 last_duration = e.duration

 finished_basic_line = (''.join(measure_commands) + ' m').strip()
 commands.append(finished_basic_line)

 return commands

def num_to_str_name(num, upper=False):
 """
 Convert measure number to a BASIC variable name

 :param num: index for a BASIC variable name
 :type num: int
 :param upper: return upper case, defaults to False
 :type upper: bool, optional
 :return: C128 BASIC variable name
 :rtype: str
 """
 if num < 0 or num > 675:
 raise ChiptuneSAKValueError("number to convert to str var name out of range")
 if upper:
 offset = ord('A')
 else:
 offset = ord('a')
 str_name = chr((num // 26) + offset) + chr((num % 26) + offset)
 return str_name

 Source code for chiptunesak.chirp

Midi Simple Processing Library
#

import copy
import bisect
import more_itertools as moreit
from chiptunesak.base import *
from chiptunesak import mchirp
from chiptunesak import rchirp
from chiptunesak import constants

[docs]class Note:
 """
 This class represents a note in human-friendly form: as a note with a start time,
 a duration, and a velocity.
 """

 def __init__(self, start, note, duration, velocity=100, tied_from=False, tied_to=False):
 self.note_num = note #: MIDI note number
 self.start_time = start #: In ticks since tick 0
 self.duration = duration #: In ticks
 self.velocity = velocity #: MIDI velocity 0-127
 self.tied_from = tied_from #: Is the next note tied from this note?
 self.tied_to = tied_to #: Is this note tied from the previous note?

 def __eq__(self, other):
 """ Two notes are equal when their note numbers and durations are the same """
 return (self.note_num == other.note_num) and (self.duration == other.duration)

[docs] def split(self, tick_position):
 """
 Splits a note into two notes at time tick_position, if the tick position falls
 within the note's duration.

 :param tick_position: position to split at
 :type tick_position: int
 :return: list with split note
 :rtype: list of Note
 """
 if tick_position < self.start_time or tick_position >= self.start_time + self.duration:
 return [self]
 else:
 new_duration = self.start_time + self.duration - tick_position
 new_note = Note(tick_position, self.note_num, new_duration, self.velocity, tied_to=True)
 self.duration = tick_position - self.start_time
 self.tied_from = True
 return [n for n in [self, new_note] if n.duration > 0]

 def __str__(self):
 return "pit=%3d st=%4d dur=%4d vel=%4d, tfrom=%d tto=%d" \
 % (self.note_num, self.start_time, self.duration, self.velocity, self.tied_from, self.tied_to)

[docs]class ChirpTrack:
 """
 This class represents a track (or a voice) from a song. It is basically a list of Notes with some
 other context information.

 ASSUMPTION: The track contains notes for only ONE instrument (midi channel). Tracks with notes
 from more than one instrument will produce undefined results.
 """

 # Define the message types to preserve as a static variable
 other_message_types = ['pitchwheel', 'control_change']

 def __init__(self, chirp_song, mchirp_track=None):
 self.chirp_song = chirp_song #: Parent song
 self.name = 'none' #: Track name
 self.channel = 0 #: This track's midi channel. Each track should have notes from only one channel.
 self.notes = [] #: The notes in the track
 self.program_changes = [] #: Program (patch) changes in the track
 self.other = [] #: Other events in the track (includes voice changes and pitchwheel)
 self.qticks_notes = chirp_song.qticks_notes #: Not start quantization from song
 self.qticks_durations = chirp_song.qticks_durations #: Note duration quantization
 if mchirp_track is not None:
 if not isinstance(mchirp_track, mchirp.MChirpTrack):
 raise ChiptuneSAKTypeError("ChirpTrack init can only import MChirpTrack objects")
 else:
 self.import_mchirp_track(mchirp_track)

[docs] def import_mchirp_track(self, mchirp_track):
 """
 Imports an MChirpTrack

 :param mchirp_track: track to import
 :type mchirp_track: MChirpTrack
 """
 def _anneal_notes(notes):
 """
 This function anneals, or combines, notes that crossed measure boundaries. It's a local
 function that only exists here.
 """
 ret_val = []
 current_note = None
 for n in notes:
 if current_note is not None:
 assert current_note.tied_from, "Continued note should be tied from: %s" % current_note
 assert n.tied_to, "Note should be tied to since last note was tied from: %s" % n
 assert n.start_time == current_note.start_time + current_note.duration, "Tied notes not adjacent"
 current_note.duration += n.duration
 if n.tied_from:
 current_note.tied_from = n.tied_from
 else:
 ret_val.append(current_note)
 current_note = None
 else:
 if n.tied_from:
 current_note = copy.copy(n)
 else:
 ret_val.append(n)
 current_note = None
 return ret_val

 self.name = mchirp_track.name
 self.channel = mchirp_track.channel
 # Preserve the quantization from the MChirp
 self.qticks_notes, self.qticks_durations = mchirp_track.qticks_notes, mchirp_track.qticks_durations
 temp_notes = [e for m in mchirp_track.measures for e in m.events if isinstance(e, Note)]
 temp_triplets = [e for m in mchirp_track.measures for e in m.events if isinstance(e, Triplet)]
 temp_notes.extend([e for tp in temp_triplets for e in tp.content if isinstance(e, Note)])
 self.program_changes = [e for m in mchirp_track.measures for e in m.events if isinstance(e, ProgramEvent)]
 self.other = [e for m in mchirp_track.measures for e in m.events if isinstance(e, OtherMidiEvent)]
 temp_notes.sort(key=lambda n: n.start_time)
 self.notes = _anneal_notes(temp_notes)
 self.notes.sort(key=lambda n: (n.start_time, -n.note_num))
 self.program_changes.sort(key=lambda e: e.start_time)
 self.other.sort(key=lambda n: n.start_time)

[docs] def estimate_quantization(self):
 """
 This method estimates the optimal quantization for note starts and durations from the note
 data itself. This version only uses the current track for the optimization. If the track
 is a part with long notes or not much movement, I recommend using the get_quantization()
 on the entire song instead. Many pieces have fairly well-defined note start spacing, but
 no discernable duration quantization, so in that case the default is half the note start
 quantization. These values are easily overridden.

 :return: tuple of quantization values for (start, duration)
 :rtype: tuple of ints
 """
 tmpNotes = [n.start_time for n in self.notes]
 self.qticks_notes = find_quantization(tmpNotes, self.chirp_song.metadata.ppq)
 tmpNotes = [n.duration for n in self.notes]
 self.qticks_durations = find_duration_quantization(tmpNotes, self.qticks_notes)
 if self.qticks_durations < self.qticks_notes:
 self.qticks_durations = self.qticks_notes // 2
 return (self.qticks_notes, self.qticks_durations)

[docs] def quantize(self, qticks_notes=None, qticks_durations=None):
 """
 This method applies quantization to both note start times and note durations. If you
 want either to remain unquantized, simply specify either qticks parameter to be 1, so
 that it will quantize to the nearest tick (i.e. leave everything unchanged)

 :param qticks_notes: Resolution of note starts in ticks
 :type qticks_notes: int
 :param qticks_durations: Resolution of note durations in ticks. Also length of shortest note.
 :type qticks_durations: int
 """
 # Update the members to reflect the quantization applied
 if qticks_notes:
 self.qticks_notes = qticks_notes
 if qticks_durations:
 self.qticks_durations = qticks_durations

 for i, n in enumerate(self.notes):
 # Store the "before" values for statistics
 start_before = n.start_time
 duration_before = n.duration
 # Quantize the start times and durations
 n.start_time = quantize_fn(n.start_time, self.qticks_notes)
 n.duration = quantize_fn(n.duration, self.qticks_durations)
 # Never quantize a note duration to less than the minimum
 if n.duration < self.qticks_durations:
 n.duration = self.qticks_durations
 self.notes[i] = n

 # Quantize the other MIDI messages in the track
 for i, m in enumerate(self.other):
 self.other[i] = OtherMidiEvent(quantize_fn(m.start_time, self.qticks_notes), m.msg)

[docs] def quantize_long(self, qticks):
 """
 Quantizes only notes longer than 3/4 qticks; quantizes both start time and duration.
 This function is useful for quantization that also preserves some ornaments, such as
 grace notes.

 :param qticks: Quantization for notes and durations
 :type qticks: int
 """
 min_length = qticks * 3 // 4
 for i, n in enumerate(self.notes):
 if n.duration >= min_length:
 n.start_time = quantize_fn(n.start_time, qticks)
 n.duration = quantize_fn(n.duration, qticks)
 self.notes[i] = n
 self.notes.sort(key=lambda n: (n.start_time, -n.note_num))

[docs] def merge_notes(self, max_merge_length_ticks):
 """
 Merges immediately adjacent notes if they are short and have the same note number.

 :param max_merge_length_ticks: Length of the longest note to merge, in ticks
 :type max_merge_length_ticks: int
 """
 ret_notes = []
 last = self.notes[0]
 for n in self.notes[1:]:
 if n.start_time == last.start_time + last.duration \
 and n.note_num == last.note_num \
 and n.duration <= max_merge_length_ticks:
 last.duration += n.duration
 continue
 else:
 ret_notes.append(last)
 last = n
 ret_notes.append(last)
 self.notes = ret_notes
 self.notes.sort(key=lambda n: (n.start_time, -n.note_num))

[docs] def remove_short_notes(self, max_duration_ticks):
 """
 Removes notes shorter than max_duration_ticks from the track.

 :param max_duration_ticks: maximum duration of notes to remove, in ticks
 :type max_duration_ticks: int
 """
 ret_notes = []
 for n in self.notes:
 if n.duration > max_duration_ticks:
 ret_notes.append(n)
 self.notes = ret_notes
 self.notes.sort(key=lambda n: (n.start_time, -n.note_num))

[docs] def set_min_note_len(self, min_len_ticks):
 """
 Sets the minimum note length for the track. Notes shorter than min_len_ticks will
 be lengthened and any notes that overlap will have their start times adjusted to allow
 the new longer note.

 :param min_len_ticks: Minimum note length
 :type min_len_ticks: int
 """
 self.notes.sort(key=lambda n: (n.start_time, -n.note_num)) # Notes must be sorted
 for i, n in enumerate(self.notes):
 if 0 < n.duration < min_len_ticks:
 n.duration = min_len_ticks
 self.notes[i] = n
 last_end = n.start_time + n.duration
 j = i + 1
 while j < len(self.notes):
 if self.notes[j].start_time < last_end:
 tmp_end = self.notes[j].start_time + self.notes[j].duration
 self.notes[j].start_time = last_end
 self.notes[j].duration = tmp_end - self.notes[j].start_time
 j += 1
 else:
 break
 self.notes = [n for n in self.notes if n.duration >= min_len_ticks]
 self.notes.sort(key=lambda n: (n.start_time, -n.note_num)) # Notes must be sorted

[docs] def remove_polyphony(self):
 """
 This function eliminates polyphony, so that in each channel there is only one note
 active at a time. If a chord is struck all at the same time, it will retain the highest
 note. Otherwise, when a new note is started, the previous note is truncated.
 """
 ret_notes = []
 last = self.notes[0]
 for n in self.notes[1:]:
 if n.start_time == last.start_time:
 continue
 elif n.start_time < last.start_time + last.duration:
 last.duration = n.start_time - last.start_time
 if last.duration > 0:
 ret_notes.append(last)
 last = n
 ret_notes.append(last)
 self.notes = ret_notes
 self.notes.sort(key=lambda n: (n.start_time, -n.note_num))

[docs] def is_polyphonic(self):
 """
 Returns whether the track is polyphonic; if any notes overlap it is.

 :return: True if track is polyphonic.
 :rtype: bool
 """
 return any(b.start_time - a.start_time < a.duration for a, b in moreit.pairwise(self.notes))

[docs] def is_quantized(self):
 """
 Returns whether the current track is quantized or not. Since a quantization of 1 is
 equivalent to no quantization, a track quantized to tick will return False.

 :return: True if the track is quantized.
 :rtype: bool
 """
 if self.qticks_notes < 2 or self.qticks_durations < 2:
 return False
 return all(n.start_time % self.qticks_notes == 0
 and n.duration % self.qticks_durations == 0
 for n in self.notes)

[docs] def remove_keyswitches(self, ks_max=8):
 """
 Removes all MIDI notes with values less than or equal to ks_max. Some MIDI devices
 and applications use these extremely low notes to convey patch change or other
 information, so removing them (especially if you do not want polyphony) is a good idea.

 :param ks_max: maximum note number for keyswitches in the track (often 8)
 :type ks_max: int
 """
 self.notes = [n for n in self.notes if n.note_num > ks_max]

[docs] def truncate(self, max_tick):
 """
 Truncate the track to max_tick

 :param max_tick: maximum tick number for events to start (track will play to end of
 any notes started)
 :type max_tick: int
 """
 self.notes = [n for n in self.notes if n.start_time <= max_tick]
 self.program_changes = [p for p in self.program_changes if p.start_time <= max_tick]
 self.other = [e for e in self.other if e.start_time <= max_tick]

[docs] def transpose(self, semitones):
 """
 Transposes track in-place by semitones, which can be positive (transpose up) or
 negative (transpose down)

 :param semitones: Number of semitones to transpose
 """
 for i, n in enumerate(self.notes):
 new_note_num = n.note_num + semitones
 if 0 <= new_note_num <= 127:
 self.notes[i].note_num = new_note_num
 else:
 self.notes[i].duration = 0 # Set duration to zero for later deletion
 self.notes = [n for n in self.notes if n.duration > 0]

[docs] def modulate(self, num, denom):
 """
 Modulates this track metrically by a factor of num / denom

 :param num: Numerator of modulation
 :param denom: Denominator of modulation
 """
 f = Fraction(num, denom).limit_denominator(32)
 num = f.numerator
 denom = f.denominator
 # Change the start times of all the "other" events
 for i, (t, m) in enumerate(self.other):
 t = (t * num) // denom
 self.other[i] = OtherMidiEvent(t, m)

 # Change all the note start times and durations
 for i, n in enumerate(self.notes):
 n.start_time = (n.start_time * num) // denom
 n.duration = (n.duration * num) // denom
 self.notes[i] = n
 # Now adjust the quantizations in case quantization has been applied to reflect the
 # new lengths
 self.qticks_notes = (self.qticks_notes * num) // denom
 self.qticks_durations = (self.qticks_durations * num) // denom

[docs] def scale_ticks(self, scale_factor):
 """
 Scales the ticks for this track by scale_factor.

 :param scale_factor:
 """
 for i, (t, m) in enumerate(self.other):
 t = int(round(t * scale_factor, 0))
 self.other[i] = OtherMidiEvent(t, m)
 for i, p in enumerate(self.program_changes):
 t = int(round(p.start_time * scale_factor, 0))
 self.program_changes[i] = ProgramEvent(t, p.program)
 # Change all the note start times and durations
 for i, n in enumerate(self.notes):
 n.start_time = int(round(n.start_time * scale_factor, 0))
 n.duration = int(round(n.duration * scale_factor, 0))
 self.notes[i] = n
 self.qticks_notes = int(round(self.qticks_notes * scale_factor, 0))
 self.qticks_durations = int(round(self.qticks_durations * scale_factor, 0))

[docs] def move_ticks(self, offset_ticks):
 """
 Moves all the events in this track by offset_ticks. Any events that would have a time
 in ticks less than 0 are set to time zero.

 :param offset_ticks:
 :type offset_ticks: int (signed)
 """
 for i, (t, m) in enumerate(self.other):
 t = max(t + offset_ticks, 0)
 self.other[i] = OtherMidiEvent(t, m)
 for i, p in enumerate(self.program_changes):
 t = max(p.start_time + offset_ticks, 0)
 self.program_changes[i] = ProgramEvent(t, p.program)
 # Change all the note start times and durations
 for i, n in enumerate(self.notes):
 n.start_time = max(n.start_time + offset_ticks, 0)
 self.notes[i] = copy.copy(n)

[docs] def set_program(self, program):
 '''
 Sets the default program (instrument) for the track at the start and
 removes any existing program changes.

 :param program: program number
 :type program: int
 '''
 self.program_changes = [ProgramEvent(0, int(program))]

 def __str__(self):
 ret_val = "Track: %s (channel %d)\n" % (self.name, self.channel)
 return ret_val + '\n'.join(str(n) for n in self.notes)

[docs]class ChirpSong(ChiptuneSAKBase):
 """
 This class represents a song. It stores notes in an intermediate representation that
 approximates traditional music notation (as pitch-duration). It also stores other
 information, such as time signatures and tempi, in a similar way.
 """
 @classmethod
 def cts_type(cls):
 return 'Chirp'

 def __init__(self, mchirp_song=None):
 ChiptuneSAKBase.__init__(self)
 self.metadata = SongMetadata()
 self.metadata.ppq = constants.DEFAULT_MIDI_PPQN #: Pulses (ticks) per quarter note. Default is 960.
 self.qticks_notes = self.metadata.ppq #: Quantization for note starts, in ticks
 self.qticks_durations = self.metadata.ppq #: Quantization for note durations, in ticks
 self.tracks = [] #: List of ChirpTrack tracks
 self.other = [] #: List of all meta events that apply to the song as a whole
 self.midi_meta_tracks = [] #: list of all the midi tracks that only contain metadata
 self.midi_note_tracks = [] #: list of all the tracks that contain notes
 self.time_signature_changes = [] #: List of time signature changes
 self.key_signature_changes = [] #: List of key signature changes
 self.tempo_changes = [] #: List of tempo changes
 if mchirp_song is not None:
 if mchirp_song.cts_type() != 'MChirp':
 raise ChiptuneSAKTypeError("ChirpSong init can only import MChirpSong objects")
 else:
 self.import_mchirp_song(mchirp_song)

[docs] def reset_all(self):
 """
 Clear all tracks and reinitialize to default values
 """
 self.metadata = SongMetadata()
 self.metadata.ppq = constants.DEFAULT_MIDI_PPQN #: Pulses (ticks) per quarter note.
 self.qticks_notes = self.metadata.ppq #: Quantization for note starts, in ticks
 self.qticks_durations = self.metadata.ppq #: Quantization for note durations, in ticks
 self.tracks = [] #: List of ChirpTrack tracks
 self.other = [] #: List of all meta events that apply to the song as a whole
 self.midi_meta_tracks = [] #: list of all the midi tracks that only contain metadata
 self.midi_note_tracks = [] #: list of all the tracks that contain notes
 self.time_signature_changes = [] #: List of time signature changes
 self.key_signature_changes = [] #: List of key signature changes
 self.tempo_changes = [] #: List of tempo changes

[docs] def to_rchirp(self, **kwargs):
 """
 Convert to RChirp. This calls the creation of an RChirp object

 :return: new RChirp object
 :rtype: rchirp.RChirpSong
 """
 self.set_options(**kwargs)
 self.set_metadata()
 return rchirp.RChirpSong(self)

[docs] def to_mchirp(self, **kwargs):
 """
 Convert to MChirp. This calls the creation of an MChirp object

 :return: new MChirp object
 :rtype: MChirpSong
 """
 self.set_options(**kwargs)
 self.set_metadata()
 return mchirp.MChirpSong(self)

[docs] def import_mchirp_song(self, mchirp_song):
 """
 Imports an MChirpSong

 :param mchirp_song:
 :type mchirp_song: MChirpSong
 """
 self.reset_all()
 for t in mchirp_song.tracks:
 self.tracks.append(ChirpTrack(self, t))
 self.metadata = copy.deepcopy(mchirp_song.metadata)
 # Now transfer over key signature, time signature, and tempo changes
 # these are stored inside measures for ALL tracks so we only have to extract them from one.
 t = mchirp_song.tracks[0]
 self.time_signature_changes = [e for m in t.measures for e in m.events if isinstance(e, TimeSignatureEvent)]
 self.key_signature_changes = [e for m in t.measures for e in m.events if isinstance(e, KeySignatureEvent)]
 self.tempo_changes = [e for m in t.measures for e in m.events if isinstance(e, TempoEvent)]
 self.other = copy.deepcopy(mchirp_song.other)
 self.set_metadata()

[docs] def set_metadata(self):
 """
 Sets the song metadata to reflect the current status of the song. This function cleans up
 any redundant item signature, key signature, or tempo changes (two events that have the same
 timestamp) and keeps the last one it finds, then sets the metadata values to the first of each
 respectively.
 """
 # Eliminate redundant time signature changes
 if len(self.time_signature_changes) > 1:
 new_ts_changes = []
 current_ts = self.time_signature_changes[0]
 for i in range(1, len(self.time_signature_changes)):
 if self.time_signature_changes[i].start_time > self.time_signature_changes[i - 1].start_time:
 new_ts_changes.append(current_ts)
 current_ts = self.time_signature_changes[i]
 new_ts_changes.append(current_ts)
 self.time_signature_changes = new_ts_changes

 # Set the time signature. Note that this is a change event
 if len(self.time_signature_changes) > 0:
 self.metadata.time_signature = self.time_signature_changes[0]

 # Eliminate redundant key signature changes
 if len(self.key_signature_changes) > 1:
 new_ks_changes = []
 current_ks = self.key_signature_changes[0]
 for i in range(1, len(self.key_signature_changes)):
 if self.key_signature_changes[i].start_time > self.key_signature_changes[i - 1].start_time:
 new_ks_changes.append(current_ks)
 current_ks = self.key_signature_changes[i]
 new_ks_changes.append(current_ks)
 self.key_signature_changes = new_ks_changes

 # Set the key signature; note that this is a change event
 if len(self.key_signature_changes) > 0:
 self.metadata.key_signature = self.key_signature_changes[0]

 # Eliminate redundant tempo changes
 if len(self.tempo_changes) > 1:
 new_qpm_changes = []
 current_ks = self.tempo_changes[0]
 for i in range(1, len(self.tempo_changes)):
 if self.tempo_changes[i].start_time > self.tempo_changes[i - 1].start_time:
 new_qpm_changes.append(current_ks)
 current_ks = self.tempo_changes[i]
 new_qpm_changes.append(current_ks)
 self.tempo_changes = new_qpm_changes

 # Set the qpm; this is different because it is not a change event
 if len(self.tempo_changes) > 0:
 self.metadata.qpm = self.tempo_changes[0].qpm

[docs] def estimate_quantization(self):
 """
 This method estimates the optimal quantization for note starts and durations from the note
 data itself. This version all note data in the tracks. Many pieces have no discernable
 duration quantization, so in that case the default is half the note start quantization.
 These values are easily overridden.
 """
 tmp_notes = [n.start_time for t in self.tracks for n in t.notes]
 self.qticks_notes = find_quantization(tmp_notes, self.metadata.ppq)
 tmp_durations = [n.duration for t in self.tracks for n in t.notes]
 self.qticks_durations = find_duration_quantization(tmp_durations, self.qticks_notes)
 if self.qticks_durations < self.qticks_notes:
 self.qticks_durations = self.qticks_notes // 2
 return (self.qticks_notes, self.qticks_durations)

[docs] def quantize(self, qticks_notes=None, qticks_durations=None):
 """
 This method applies quantization to both note start times and note durations. If you
 want either to remain unquantized, simply specify a qticks parameter to be 1 (quantization
 of 1 tick).

 :param qticks_notes: Quantization for note starts, in MIDI ticks
 :type qticks_notes: int
 :param qticks_durations: Quantization for note durations, in MIDI ticks
 :type qticks_durations: int
 """

 if qticks_notes:
 self.qticks_notes = qticks_notes
 if qticks_durations:
 self.qticks_durations = qticks_durations
 for t in self.tracks:
 t.quantize(self.qticks_notes, self.qticks_durations)

 for i, m in enumerate(self.tempo_changes):
 self.tempo_changes[i] = TempoEvent(quantize_fn(m.start_time, self.qticks_notes), m.qpm)
 for i, m in enumerate(self.time_signature_changes):
 self.time_signature_changes[i] = \
 TimeSignatureEvent(quantize_fn(m.start_time, self.qticks_notes), m.num, m.denom)
 for i, m in enumerate(self.key_signature_changes):
 self.key_signature_changes[i] = KeySignatureEvent(quantize_fn(m.start_time, self.qticks_notes), m.key)
 for i, m in enumerate(self.other):
 self.other[i] = OtherMidiEvent(quantize_fn(m.start_time, self.qticks_notes), m.msg)

[docs] def quantize_from_note_name(self, min_note_duration_string, dotted_allowed=False, triplets_allowed=False):
 """
 Quantize song with more user-friendly input than ticks. Allowed quantizations are the keys for the
 constants.DURATION_STR dictionary. If an input contains a '.' or a '-3' the corresponding
 values for dotted_allowed and triplets_allowed will be overridden.

 :param min_note_duration_string: Quantization note value
 :type min_note_duration_string: str
 :param dotted_allowed: If true, dotted notes are allowed
 :type dotted_allowed: bool
 :param triplets_allowed: If true, triplets (of the specified quantization) are allowed
 :type triplets_allowed: bool
 """

 if '.' in min_note_duration_string:
 dotted_allowed = True
 min_note_duration_string = min_note_duration_string.replace('.', '')
 if '-3' in min_note_duration_string:
 triplets_allowed = True
 min_note_duration_string = min_note_duration_string.replace('-3', '')
 qticks = int(self.metadata.ppq * constants.DURATION_STR[min_note_duration_string])
 if dotted_allowed:
 qticks //= 2
 if triplets_allowed:
 qticks //= 3
 self.quantize(qticks, qticks)

[docs] def is_quantized(self):
 """
 Has the song been quantized? This requires that all the tracks have been quantized
 with their current qticks_notes and qticks_durations values.

 :return: Boolean True if all tracks in the song are quantized
 """
 return all(t.is_quantized() for t in self.tracks)

[docs] def explode_polyphony(self, i_track):
 """
 'Explodes' a single track into multi-track polyphony. The new tracks replace the old
 track in the song's list of tracks, so later tracks will be pushed to higher indexes.
 The new tracks are named using the name of the original track with '_sx' appended, where
 x is a number for the split notes.
 The polyphony is split using a first-available-track algorithm, which works well for splitting chords.

 :param i_track: zero-based index of the track for the song (ignore the meta track - first track is 0)
 :type i_track: int
 """
 def _get_available_tracks(note, current_notes):
 ret = []
 for it, n in enumerate(current_notes):
 if note.start_time >= n.start_time + n.duration:
 ret.append(it)
 # ret.sort(key=lambda n: (-current_notes[n].note_num))
 return ret
 old_track = self.tracks.pop(i_track)
 old_track.notes.sort(key=lambda n: (n.start_time, -n.note_num))
 new_tracks = [ChirpTrack(self)]
 current_notes = [Note(0, 0, 0, 0)]
 for note in old_track.notes:
 possible = _get_available_tracks(note, current_notes)
 if len(possible) == 0:
 new_tracks.append(ChirpTrack(self))
 new_tracks[-1].notes.append(note)
 current_notes.append(note)
 else:
 it = possible[0]
 new_tracks[it].notes.append(note)
 current_notes[it] = note
 for i, t in enumerate(new_tracks):
 new_tracks[i].other = copy.deepcopy(old_track.other)
 new_tracks[i].channel = old_track.channel
 new_tracks[i].name = old_track.name + ' s%d' % i
 for t in new_tracks[::-1]:
 self.tracks.insert(i_track, t)

[docs] def remove_polyphony(self):
 """
 Eliminate polyphony from all tracks.
 """
 for t in self.tracks:
 t.remove_polyphony()

[docs] def is_polyphonic(self):
 """
 Is the song polyphonic? Returns true if ANY of the tracks contains polyphony of any kind.

 :return: Boolean True if any track in the song is polyphonic
 :rtype: bool
 """
 return any(t.is_polyphonic() for t in self.tracks)

[docs] def remove_keyswitches(self, ks_max=8):
 """
 Some MIDI programs use extremely low notes as a signaling mechanism.
 This method removes notes with pitch <= ks_max from all tracks.

 :param ks_max: Maximum note number for the control notes
 :type ks_max: int
 """
 for t in self.tracks:
 t.remove_keyswitches(ks_max)

[docs] def truncate(self, max_tick):
 """
 Truncate the song to max_tick

 :param max_tick: maximum tick number for events to start (song will play to end of any
 notes started)
 :type max_tick: int
 """
 self.time_signature_changes = [ts for ts in self.time_signature_changes if ts.start_time <= max_tick]
 self.key_signature_changes = [ks for ks in self.key_signature_changes if ks.start_time <= max_tick]
 self.tempo_changes = [t for t in self.tempo_changes if t.start_time <= max_tick]
 self.other = [e for e in self.other if e.start_time <= max_tick]
 for t in self.tracks:
 t.truncate(max_tick)

[docs] def transpose(self, semitones, minimize_accidentals=True):
 """
 Transposes the song by semitones

 :param semitones: number of semitones to transpose by. Positive transposes to higher pitch.
 :type semitones: int
 :param minimize_accidentals: True to choose key signature to minimize number of accidentals
 :type minimize_accidentals: bool
 """
 # First, transpose key signatures
 for ik, ks in enumerate(self.key_signature_changes):
 new_key = ks.key.transpose(semitones)
 if minimize_accidentals:
 new_key.minimize_accidentals()
 self.key_signature_changes[ik] = KeySignatureEvent(ks.start_time, new_key)
 if ik == 0:
 self.metadata.key_signature = self.key_signature_changes[0]

 # Now transpose the tracks
 for it, t in enumerate(self.tracks):
 self.tracks[it].transpose(semitones)

[docs] def modulate(self, num, denom):
 """
 This method performs metric modulation. It does so by multiplying the length of all notes by num/denom,
 and also automatically adjusts the time signatures and tempos such that the resulting music will sound
 identical to the original.

 :param num: Numerator of metric modulation
 :type num: int
 :param denom: Denominator of metric modulation
 :type denom: int
 """
 f = Fraction(num, denom).limit_denominator(32)
 num = f.numerator
 denom = f.denominator
 # First adjust the time signatures
 for i, ts in enumerate(self.time_signature_changes):
 # The time signature always has to be whole numbers so if the new numerator is not an integer fix that
 # by multiplying by 3/2
 t, n, d = ts
 new_time_signature = (n * num, d * denom)
 if num < denom:
 if all((v % 4) == 0 for v in new_time_signature):
 factor = new_time_signature[1] // 4
 if all((v % factor) == 0 for v in new_time_signature):
 new_time_signature = (v // factor for v in new_time_signature)
 self.time_signature_changes[i] = TimeSignatureEvent((t * num) // denom, *new_time_signature)
 if i == 0:
 self.metadata.time_signature = self.time_signature_changes[0]
 # Now the key signatures
 for i, ks in enumerate(self.key_signature_changes):
 # The time signature always has to be whole numbers so if the new numerator is not an integer fix that
 # by multiplying by 3/2
 t, k = ks
 self.key_signature_changes[i] = KeySignatureEvent((t * num) // denom, k)
 # Next the tempos
 for i, tm in enumerate(self.tempo_changes):
 t, qpm = tm
 self.tempo_changes[i] = TempoEvent((t * num) // denom, (qpm * num) // denom)
 # Now all the rest of the meta messages
 for i, ms in enumerate(self.other):
 t, m = ms
 self.other[i] = OtherMidiEvent((t * num) // denom, m)
 # Finally, modulate each track
 for i, _ in enumerate(self.tracks):
 self.tracks[i].modulate(num, denom)
 # Now adjust the quantizations in case quantization has been applied to reflect the new lengths
 self.qticks_notes = (self.qticks_notes * num) // denom
 self.qticks_durations = (self.qticks_durations * num) // denom
 # Now adjust everything to be self-consistent
 self.set_metadata()

[docs] def scale_ticks(self, scale_factor):
 """
 Scales the ticks for all events in the song. Multiplies the time for each event by scale_factor.
 This method also changes the ppq by the scale factor.

 :param scale_factor: Floating-point scale factor to multiply all events.
 :type scale_factor: float
 """
 self.metadata.ppq = int(round(self.metadata.ppq * scale_factor, 0))
 # First adjust the time signatures
 for i, ts in enumerate(self.time_signature_changes):
 # The time signature always has to be whole numbers so if the new numerator is not an integer fix that
 # by multiplying by 3/2
 t = int(round(ts.start_time * scale_factor, 0))
 self.time_signature_changes[i] = TimeSignatureEvent(t, ts.num, ts.denom)
 # Now the key signature changes
 for i, ks in enumerate(self.key_signature_changes):
 t = int(round(ks.start_time * scale_factor, 0))
 self.key_signature_changes[i] = KeySignatureEvent(t, ks.key)
 # Next the tempos
 for i, tm in enumerate(self.tempo_changes):
 t = int(round(tm.start_time * scale_factor, 0))
 self.tempo_changes[i] = TempoEvent(t, tm.qpm)
 # Now all the rest of the meta messages
 for i, ms in enumerate(self.other):
 t = int(round(ms.start_time * scale_factor, 0))
 self.other[i] = OtherMidiEvent(t, ms.msg)
 # Now adjust the quantizations in case quantization has been applied to reflect the new lengths
 self.qticks_notes = int(round(self.qticks_notes * scale_factor, 0))
 self.qticks_durations = int(round(self.qticks_durations * scale_factor, 0))
 # Finally, scale each track
 for i, _ in enumerate(self.tracks):
 self.tracks[i].scale_ticks(scale_factor)

[docs] def move_ticks(self, offset_ticks):
 """
 Moves all notes in the song a given number of ticks. Adds the offset to the current tick for every event.
 If the resulting event has a negative starting time in ticks, it is set to 0.

 :param offset_ticks: Offset in ticks
 :type offset_ticks: int
 """
 # First adjust the time signatures
 for i, ts in enumerate(self.time_signature_changes):
 # The time signature always has to be whole numbers so if the new numerator is not an integer fix that
 # by multiplying by 3/2
 t = max(ts.start_time + offset_ticks, 0)
 self.time_signature_changes[i] = TimeSignatureEvent(t, ts.num, ts.denom)
 # Now the key signature changes
 for i, ks in enumerate(self.key_signature_changes):
 t = max(ks.start_time + offset_ticks, 0)
 self.key_signature_changes[i] = KeySignatureEvent(t, ks.key)
 # Next the tempos
 for i, tm in enumerate(self.tempo_changes):
 t = max(tm.start_time + offset_ticks, 0)
 self.tempo_changes[i] = TempoEvent(t, tm.qpm)
 # Now all the rest of the meta messages
 for i, ms in enumerate(self.other):
 t = max(ms.start_time + offset_ticks, 0)
 self.other[i] = OtherMidiEvent(t, ms.msg)
 # Finally, offset each track
 for i, _ in enumerate(self.tracks):
 self.tracks[i].move_ticks(offset_ticks)

[docs] def set_qpm(self, qpm):
 """
 Sets the tempo in QPM for the entire song. Any existing tempo events will be removed.

 :param qpm: quarter-notes per minute tempo
 :type qpm: int
 """
 self.metadata.qpm = qpm
 self.tempo_changes = [TempoEvent(0, qpm)]

[docs] def set_time_signature(self, num, denom):
 """
 Sets the time signature for the entire song. Any existing time signature changes will be removed.

 :param num:
 :type num:
 :param denom:
 :type num:
 """
 self.time_signature_changes = [TimeSignatureEvent(0, num, denom)]

[docs] def set_key_signature(self, new_key):
 """
 Sets the key signature for the entire song. Any existing key signatures and changes will be removed.

 :param new_key: Key signature. String such as 'A#' or 'Abm'
 :type new_key: str
 """
 self.key_signature_changes = [KeySignatureEvent(0, key.ChirpKey(new_key))]

[docs] def end_time(self):
 """
 Finds the end time of the last note in the song.

 :return: Time (in ticks) of the end of the last note in the song.
 :rtype: int
 """
 return max(n.start_time + n.duration for t in self.tracks for n in t.notes)

[docs] def measure_starts(self):
 """
 Returns the starting time for measures in the song. Calculated using time_signature_changes.

 :return: List of measure starting times in MIDI ticks
 :rtype: list
 """
 return [m.start_time for m in self.measures_and_beats() if m.beat == 1]

[docs] def measures_and_beats(self):
 """
 Returns the positions of all measures and beats in the song. Calculated using time_signature_changes.

 :return: List of MeasureBeat objects for each beat of the song.
 :rtype: list
 """
 measures = []
 max_time = self.end_time()
 time_signature_changes = sorted(self.time_signature_changes)
 if len(time_signature_changes) == 0 or time_signature_changes[0].start_time != 0:
 raise ChiptuneSAKValueError("No starting time signature")
 last = time_signature_changes[0]
 t, m, b = 0, 1, 1
 for s in time_signature_changes:
 while t < s.start_time:
 measures.append(Beat(t, m, b))
 t += (self.metadata.ppq * 4) // last.denom
 b += 1
 if b > last.num:
 m += 1
 b = 1
 last = s
 while t <= max_time:
 measures.append(Beat(t, m, b))
 t += (self.metadata.ppq * 4) // last.denom
 b += 1
 if b > last.num:
 m += 1
 b = 1
 return measures

[docs] def get_measure_beat(self, time_in_ticks):
 """
 This method returns a (measure, beat) tuple for a given time; the time is greater than or
 equal to the returned measure and beat but less than the next. The result should be
 interpreted as the time being during the measure and beat returned.

 :param time_in_ticks: Time during the song, in MIDI ticks
 :type time_in_ticks: int
 :return: MeasureBeat object with the current measure and beat
 :rtype: MeasureBeat
 """
 measure_beats = self.measures_and_beats()
 # Make a list of start times from the list of measure-beat times.
 tmp = [m.start_time for m in measure_beats]
 # Find the index of the desired time in the list.
 pos = bisect.bisect_right(tmp, time_in_ticks)
 # Return the corresponding measure/beat
 return measure_beats[pos - 1]

[docs] def get_active_time_signature(self, time_in_ticks):
 """
 Get the active time signature at a given time (in ticks) during the song.

 :param time_in_ticks: Time during the song, in MIDI ticks
 :type time_in_ticks: int
 :return: Active time signature at the time
 :rtype: TimeSignatureChange
 """
 itime = 0
 if len(self.time_signature_changes) == 0 or self.time_signature_changes[0].start_time != 0:
 raise ChiptuneSAKValueError("No starting time signature")
 n_time_signature_changes = len(self.time_signature_changes)
 while itime < n_time_signature_changes and self.time_signature_changes[itime].start_time < time_in_ticks:
 itime += 1
 return self.time_signature_changes[itime - 1]

[docs] def get_active_key_signature(self, time_in_ticks):
 """
 Get the active key signature at a given time (in ticks) during the song.

 :param time_in_ticks: Time during the song, in MIDI ticks
 :type time_in_ticks: int
 :return: Key signature active at the time
 :rtype: KeySignatureChange
 """
 ikey = 0
 if len(self.key_signature_changes) == 0 or self.key_signature_changes[0].start_time != 0:
 raise ChiptuneSAKValueError("No starting time signature")
 n_key_signature_changes = len(self.key_signature_changes)
 while ikey < n_key_signature_changes and self.key_signature_changes[ikey].start_time < time_in_ticks:
 ikey += 1
 return self.key_signature_changes[ikey - 1]

--
#
Utility functions
#
--

def quantization_error(t_ticks, q_ticks):
 """
 Calculate the error, in ticks, for the given time for a quantization of q ticks.

 :param t_ticks: time in ticks
 :type t_ticks: int
 :param q_ticks: quantization in ticks
 :type q_ticks: int
 :return: quantization error, in ticks
 :rtype: int
 """
 j = t_ticks // q_ticks
 return int(min(abs(t_ticks - q_ticks * j), abs(t_ticks - q_ticks * (j + 1))))

def objective_error(note_start_times, test_quantization):
 """
 This is the objective function for getting the error for the entire set of notes for a
 given quantization in ticks. The function used here could be a sum, RMS, or other
 statistic, but empirical tests indicate that the max used here works well and is robust.

 :param note_start_times: note start times in ticks
 :type note_start_times: list of int
 :param test_quantization: test quantization, in ticks
 :type test_quantization: int
 :return: objective error function value
 :rtype: int
 """
 return max(quantization_error(n, test_quantization) for n in note_start_times)

[docs]def find_quantization(time_series, ppq):
 """
 Find the optimal quantization in ticks to use for a given set of times. The algorithm given
 here is by no means universal or guaranteed, but it usually gives a sensible answer.

 The algorithm works as follows:
 - Starting with quarter notes, obtain the error from quantization of the entire set of times.
 - Then obtain the error from quantization by 2/3 that value (i.e. triplets).
 - Then go to the next power of two (e.g. 8th notes, a6th notes, etc.) and repeat

 A minimum in quantization error will be observed at the "right" quantization. In either case
 above, the next quantization tested will be incommensurate (either a factor of 2/3 or a factor
 of 3/4) which will make the quantization error worse.

 Thus, the first minimum that appears will be the correct value.

 The algorithm does not seem to work as well for note durations as it does for note starts, probably
 because performed music rarely has clean note cutoffs.

 :param time_series: a series times, usually note start times, in ticks
 :type time_series: list of int
 :param ppq: ppq value (ticks per quarter note)
 :type ppq: int
 :return: quantization in ticks
 :rtype: int
 """
 last_err = len(time_series) * ppq
 last_q = ppq
 note_value = 4
 while note_value <= 128: # We have arbitrarily chosen 128th notes as the fastest possible
 test_quantization = ppq * 4 // note_value
 e = objective_error(time_series, test_quantization)
 # print(test_quantization, e) # This was useful for observing the behavior of real-world music
 if e == 0: # Perfect quantization! We are done.
 return test_quantization
 # If this is worse than the last one, the last one was the right one.
 elif e > last_err:
 return last_q
 last_q = test_quantization
 last_err = e

 # Now test the quantization for triplets of the current note value.
 test_quantization = test_quantization * 2 // 3
 e = objective_error(time_series, test_quantization)
 # print(test_quantization, e) # This was useful for observing the behavior of real-world music
 if e == 0: # Perfect quantization! We are done.
 return test_quantization
 # If this is worse than the last one, the last one was the right one.
 elif e > last_err:
 return last_q
 last_q = test_quantization
 last_err = e

 # Try the next power of two
 note_value *= 2
 return 1 # Return a 1 for failed quantization means 1 tick resolution

[docs]def find_duration_quantization(durations, qticks_note):
 """
 The duration quantization is determined from the shortest note length.
 The algorithm starts from the estimated quantization for note starts.

 :param durations: durations from which to estimate quantization
 :type durations: list of int
 :param qticks_note: quantization already determined for note start times
 :type qticks_note: int
 :return: estimated duration quantization, in ticks
 :rtype: int
 """
 min_length = min(durations)
 if not (min_length > 0):
 raise ChiptuneSAKQuantizationError("Illegal minimum note length (%d)" % min_length)
 current_q = qticks_note
 ratio = min_length / current_q
 while ratio < 0.9:
 # Try a triplet
 tmp_q = current_q
 current_q = current_q * 3 // 2
 ratio = min_length / current_q
 if ratio > 0.9:
 break
 current_q = tmp_q // 2
 ratio = min_length / current_q
 return current_q

[docs]def quantize_fn(t, qticks):
 """
 This function quantizes a time or duration to a certain number of ticks. It snaps to the
 nearest quantized value.

 :param t: a start time or duration, in ticks
 :type t: int
 :param qticks: quantization in ticks
 :type qticks: int
 :return: quantized start time or duration
 :rtype: int
 """
 current = t // qticks
 next = current + 1
 current *= qticks
 next *= qticks
 if abs(t - current) <= abs(next - t):
 return current
 else:
 return next

 Source code for chiptunesak.goat_tracker

Code to import and export goattracker .sng files (both regular and stereo)
#
Notes:
- This code ignores multispeed considerations (for now)

from os import path, listdir
from os.path import isfile, join
import copy
from dataclasses import dataclass
from chiptunesak import constants # import ARCH, C0_MIDI_NUM, project_to_absolute_path
from chiptunesak import base
from chiptunesak.byte_util import read_binary_file
from chiptunesak import rchirp
from chiptunesak.errors import *

DEFAULT_INSTR_PATH = 'res/gtInstruments/'
DEFAULT_MAX_PAT_LEN = 126

GoatTracker constants
GT_FILE_HEADER = b'GTS5'
GT_INSTR_BYTE_LEN = 25
GT_DEFAULT_TEMPO = 6
GT_DEFAULT_FUNKTEMPOS = [9, 6] # default alternating tempos, from GT's gplay.c

All these MAXes are the same for goattracker 2 (1SID) and goattracker 2 stereo (2SID)
Most found in gcommon.h
GT_MAX_SUBTUNES_PER_SONG = 32 # Each subtune gets its own orderlist of patterns
"song" means a collection of independently-playable subtunes
GT_MAX_ELM_PER_ORDERLIST = 255 # at minimum, it must contain the endmark and following byte
GT_MAX_INSTR_PER_SONG: int = 63
GT_MAX_PATTERNS_PER_SONG = 208 # patterns can be shared across channels and subtunes
Can populate rows 0-127, 128 is end marker. Min row count allowed is 1.
GT_MAX_ROWS_PER_PATTERN = 128
GT_MAX_TABLE_LEN = 255

GT_REST = 0xBD # A rest in goattracker means NOP, not rest
GT_NOTE_OFFSET = 0x60 # Note value offset
GT_MAX_NOTE_VALUE = 0xBF # Maximum possible value for note
GT_KEY_OFF = 0xBE
GT_KEY_ON = 0xBF
GT_OL_RST = 0xFF # order list restart marker
GT_PAT_END = 0xFF # pattern end
GT_TEMPO_CHNG_CMD = 0x0F

[docs]class GoatTracker(base.ChiptuneSAKIO):
 """
 The IO interface for GoatTracker and GoatTracker Stereo

 Supports conversions between RChirp and GoatTracker .sng format
 """
 @classmethod
 def cts_type(cls):
 return 'GoatTracker'

 def __init__(self):
 base.ChiptuneSAKIO.__init__(self)
 self.set_options(max_pattern_len=DEFAULT_MAX_PAT_LEN, # max pattern length if no given patterns
 instruments=[], # gt instrument assignments, in order
 end_with_repeat=False, # default is to stop GoatTracker from repeating music
 arch=constants.DEFAULT_ARCH) # architecture (for import to RChirp)

[docs] def set_options(self, **kwargs):
 """
 Sets options for this module, with validation when required

 :param kwargs: keyword arguments for options
 :type kwargs: keyword arguments
 """
 for op, val in kwargs.items():
 op = op.lower() # All option names must be lowercase
 # Check for legal maximum pattern length
 if op == 'max_pattern_len':
 if not (1 <= val <= GT_MAX_ROWS_PER_PATTERN):
 raise Exception("Error: max rows for a pattern out of range")
 elif op == 'instruments':
 # Check to be sure instrument names don't include extensions
 for i, ins_name in enumerate(val):
 if ins_name[-4:] == '.ins':
 val[i] = ins_name[:-4]
 elif op == 'arch':
 if val not in constants.ARCH:
 raise ChiptuneSAKValueError(f'Error: Unknown architecture {val}')
 # Now set the option
 self._options[op] = val

[docs] def to_bin(self, rchirp_song, **kwargs):
 """
 Convert an RChirpSong into a GoatTracker .sng file format

 :param rchirp_song: rchirp data
 :type rchirp_song: MChirpSong
 :return: sng binary file format
 :rtype: bytearray

 :keyword options:
 * **end_with_repeat** (bool) - True if song should repeat when finished
 * **max_pattern_len** (int) - Maximum pattern length to use. Must be <= 127
 * **instruments** (list of str) - Instrument names that will be extracted from GT instruments directory
 Note: These instruments are in instrument order, not in voice order! Multiple voices may use the
 same instrument, or multiple instruments may be on a voice. The instrument numbers are assigned
 in the order instruments are processed on conversion to RChirp.
 """
 if rchirp_song.cts_type() != 'RChirp':
 raise Exception("Error: GoatTracker to_bin() only supports rchirp so far")

 self.set_options(**kwargs)

 self.append_instruments_to_rchirp(rchirp_song)

 parsed_gt = GTSong()
 parsed_gt.export_rchirp_to_parsed_gt(
 rchirp_song,
 self.get_option('end_with_repeat', False),
 self.get_option('max_pattern_len', DEFAULT_MAX_PAT_LEN))
 return parsed_gt.export_parsed_gt_to_gt_binary()

[docs] def to_file(self, rchirp_song, filename, **kwargs):
 """
 Convert and save an RChirpSong as a GoatTracker sng file

 :param rchirp_song: rchirp data
 :type rchirp_song: RChirpSong
 :param filename: output path and file name
 :type filename: str

 :keyword options: see `to_bin()`

 """
 with open(filename, 'wb') as f:
 f.write(self.to_bin(rchirp_song, **kwargs))

[docs] def to_rchirp(self, filename, **kwargs):
 """
 Import a GoatTracker sng file to RChirp

 :param filename: File name of .sng file
 :type filename: str
 :return: rchirp song
 :rtype: RChirpSong

 :keyword options:
 * **subtune** (int) - The subtune numer to import. Defaults to 0
 * **arch** (str) - architecture string. Must be one defined in constants.py
 """
 self.set_options(**kwargs)
 subtune = int(self.get_option('subtune', 0))
 arch = self.get_option('arch', constants.DEFAULT_ARCH)
 rchirp_song = import_sng_file_to_rchirp(filename, subtune_number=subtune)
 rchirp_song.arch = arch
 return rchirp_song

 def append_instruments_to_rchirp(self, rchirp_song):
 for instrument in list(self.get_option('instruments')):
 add_gt_instrument_to_rchirp(rchirp_song, instrument)

@dataclass
class GtHeader:
 id: str = GT_FILE_HEADER
 song_name: str = ''
 author_name: str = ''
 copyright: str = ''
 num_subtunes: int = 0

 def to_bytes(self):
 """
 Converts header information into GT bytes.
 :return: bytes that represet the header fields
 :rtype: bytes
 """
 result = bytearray()
 result += GT_FILE_HEADER
 result += pad_or_truncate(self.song_name, 32)
 result += pad_or_truncate(self.author_name, 32)
 result += pad_or_truncate(self.copyright, 32)
 result.append(self.num_subtunes)
 return result

 def __eq__(self, other):
 return self.to_bytes() == other.to_bytes()

@dataclass
class GtPatternRow:
 note_data: int = GT_REST
 instr_num: int = 0
 command: int = 0
 command_data: int = 0

 def to_bytes(self):
 """
 Converts a pattern row into GT bytes.
 :return: bytes that represet the pattern row
 :rtype: bytes
 """
 if self.note_data is not None \
 and not (GT_NOTE_OFFSET <= self.note_data <= GT_MAX_NOTE_VALUE) \
 and self.note_data != GT_PAT_END:
 raise ChiptuneSAKValueError(f'Error: Illegal GT note value number: {self.note_data:02X}')
 if self.note_data is None:
 self.note_data = GT_REST
 else:
 if self.instr_num is None:
 raise ChiptuneSAKContentError("Error: instrument number is None")
 return bytes([self.note_data, self.instr_num, self.command, self.command_data])

PATTERN_END_ROW = GtPatternRow(note_data=GT_PAT_END)
PATTERN_EMPTY_ROW = GtPatternRow(note_data=GT_REST)

@dataclass
class GtInstrument:
 """
 Holds the parsed values from the 25-byte instrument data

 Note: the wave, pulse, filter, and speed table pointers are 1-based indexing.
 0 is reserved to mean "not pointing to anything". However, the table bytes
 to which they point are 0-based, except for in the GoatTracker GUI where they're
 displayed as 1-based.
 """
 instr_num: int = 0
 attack_decay: int = 0
 sustain_release: int = 0
 wave_ptr: int = 0
 pulse_ptr: int = 0
 filter_ptr: int = 0
 vib_speedtable_ptr: int = 0
 vib_delay: int = 0
 gateoff_timer: int = 0x02
 hard_restart_1st_frame_wave: int = 0x09
 inst_name: str = ''

 def to_bytes(self):
 """
 Converts an instrument instance into GT bytes.
 :return: bytes that represet the instrument
 :rtype: bytes
 """
 result = bytearray()
 result += bytes([self.attack_decay, self.sustain_release,
 self.wave_ptr, self.pulse_ptr, self.filter_ptr,
 self.vib_speedtable_ptr, self.vib_delay, self.gateoff_timer,
 self.hard_restart_1st_frame_wave])
 result += pad_or_truncate(self.inst_name, 16)
 return result

 def __eq__(self, other):
 return self.to_bytes() == other.to_bytes()

 @classmethod
 def from_bytes(cls, instr_num, bytes, starting_index=0):
 """
 Constructor that builds instrument (not supporting tables) from GT bytes

 :param instr_num: The GTSong instrument number
 :type instr_num: int
 :param bytes: Raw GT bytes
 :type bytes: bytes
 :param starting_index: starting index in bytes from which to start parsing, defaults to 0
 :type starting_index: int, optional
 :return: new GtInstrument instance
 :rtype: GtInstrument
 """
 if starting_index + GT_INSTR_BYTE_LEN - 1 > len(bytes):
 raise ChiptuneSAKValueError("Error: index out of range when instantiating GTInstrument")

 result = cls()
 result.instr_num = instr_num
 result.attack_decay = bytes[starting_index + 0]
 result.sustain_release = bytes[starting_index + 1]
 result.wave_ptr = bytes[starting_index + 2]
 result.pulse_ptr = bytes[starting_index + 3]
 result.filter_ptr = bytes[starting_index + 4]
 result.vib_speedtable_ptr = bytes[starting_index + 5]
 result.vib_delay = bytes[starting_index + 6]
 result.gateoff_timer = bytes[starting_index + 7]
 result.hard_restart_1st_frame_wave = bytes[starting_index + 8]
 result.inst_name = get_chars(bytes[starting_index + 9: starting_index + GT_INSTR_BYTE_LEN])

 return result

@dataclass
class GtTable:
 row_cnt: int = 0
 left_col: bytes = b''
 right_col: bytes = b''

 def append_table(self, a_table):
 """
 Extend this table with another

 :param a_table: A GtTable instance of one of the four GT table types
 :type a_table: GtTable
 """
 self.row_cnt += a_table.row_cnt
 if self.row_cnt >= GT_MAX_TABLE_LEN:
 raise ChiptuneSAKValueError("Error: max goattracker table size exceeded")
 self.left_col += a_table.left_col
 self.right_col += a_table.right_col

 def to_bytes(self):
 """
 Converts a table into GT bytes.
 :return: bytes that represet the table
 :rtype: bytes
 """
 result = bytearray()
 result.append(self.row_cnt)
 result += self.left_col
 result += self.right_col
 return result

 @classmethod
 def from_bytes(cls, bytes):
 """
 Constructor that builds a table from GT bytes

 :param bytes: table in raw GT bytes format
 :type bytes: bytes
 :return: new GtTable instance
 :rtype: GtTable
 """
 col_len = bytes[0]
 if len(bytes) != (col_len * 2) + 1:
 raise ChiptuneSAKValueError("Error: malformed table bytes in construction of GtTable instance")

 result = cls()
 result.row_cnt = col_len
 result.left_col = bytes[1:col_len + 1]
 result.right_col = bytes[col_len + 1:]
 return result

 def __eq__(self, other):
 return self.to_bytes() == other.to_bytes()

def import_sng_file_to_rchirp(input_filename, subtune_number=0):
 """
 Convert a GoatTracker sng file (normal or stereo) into an RChirp song instance

 :param input_filename: sng input path and filename
 :type input_filename: str
 :param subtune_number: the subtune number, defaults to 0
 :type subtune_number: int, optional
 :return: An RChirp song for the subtune
 :rtype: RChirpSong
 """
 if not input_filename.lower().endswith('.sng'):
 raise ChiptuneSAKIOError('Error: Expecting input filename that ends in ".sng"')
 if not path.exists(input_filename):
 raise ChiptuneSAKIOError('Cannot find "%s"' % input_filename)

 parsed_gt = GTSong()

 parsed_gt.import_sng_file_to_parsed_gt(input_filename)
 max_subtune_number = len(parsed_gt.subtune_orderlists) - 1

 if subtune_number < 0:
 raise ChiptuneSAKValueError('Error: subtune_number must be >= 0')
 if subtune_number > max_subtune_number:
 raise ChiptuneSAKValueError('Error: subtune_number must be <= %d' % max_subtune_number)

 rchirp = parsed_gt.import_parsed_gt_to_rchirp(subtune_number)

 return rchirp

def pattern_note_to_midi_note(pattern_note_byte, octave_offset=0):
 """
 Convert pattern note byte value into midi note value

 :param pattern_note_byte: GT note value
 :type pattern_note_byte: int
 :param octave_offset: Should always be zero unless some weird midi offset exists
 :type octave_offset: int
 :return: Midi note number
 :rtype: int
 """
 midi_note = pattern_note_byte - (GT_NOTE_OFFSET - constants.C0_MIDI_NUM) + (octave_offset * 12)
 if not (0 <= midi_note < 128):
 raise ChiptuneSAKValueError(f"Error: illegal midi note value {midi_note} from gt {pattern_note_byte}")
 return midi_note

def get_table(an_index, file_bytes):
 """
 Used to parse wave, pulse, filter, and speed tables from raw GT bytes

 :param an_index: index for where to start parsing the file_bytes
 :type an_index: int
 :param file_bytes: bytes containing table data
 :type file_bytes: bytes
 :return: A new GtTable instance
 :rtype: GtTable
 """
 rows = file_bytes[an_index]
 # no point in checking rows > GT_MAX_TABLE_LEN, since GT_MAX_TABLE_LEN is a $FF (max byte val)
 an_index += 1

 left_entries = file_bytes[an_index:an_index + rows]
 an_index += rows

 right_entries = file_bytes[an_index:an_index + rows]

 return GtTable(row_cnt=rows, left_col=left_entries, right_col=right_entries)

def pad_or_truncate(to_pad, length):
 """
 Truncate or pad (with zeros) a GT text field
 :param to_pad: text to pad
 :type to_pad: either string or bytes
 :param length: grow or shrink input to this length ("Procrustean bed")
 :type length: int
 :return: processed text field
 :rtype:
 """
 if isinstance(to_pad, str):
 to_pad = to_pad.encode('latin-1')
 return to_pad.ljust(length, b'\0')[0:length]

def get_chars(in_bytes, trim_nulls=True):
 """
 Convert zero-padded GT text field into string

 :param in_bytes: gt text field in bytes
 :type in_bytes: bytes
 :param trim_nulls: if true, trim off the zero-padding, defaults to True
 :type trim_nulls: bool, optional
 :return: String conversion
 :rtype: str
 """
 result = in_bytes.decode('Latin-1')
 if trim_nulls:
 result = result.strip('\0') # no interpretation, preserve encoding
 return result

def get_ins_filenames():
 """
 Get the .ins GoatTracker instrument filenames

 :return: list of filenames
 :rtype: list
 """
 dir = constants.project_to_absolute_path(DEFAULT_INSTR_PATH)
 ins_files = [f for f in listdir(dir) if isfile(join(dir, f)) and f[-4:] == '.ins']
 return ins_files

def create_gt_metadata_if_missing(rchirp_song):
 """
 Create empty GoatTracker metadata structions on rchirp if they're not present

 :param rchirp_song: an rchirp song instance
 :type rchirp_song: RChirpSong
 """
 extensions = rchirp_song.metadata.extensions

 if "gt.instruments" not in extensions:
 extensions["gt.instruments"] = bytearray()

 # stub in tables with a single entry
 if "gt.wave_table" not in extensions:
 extensions["gt.wave_table"] = bytearray(b'\x00')
 if "gt.pulse_table" not in extensions:
 extensions["gt.pulse_table"] = bytearray(b'\x00')
 if "gt.filter_table" not in extensions:
 extensions["gt.filter_table"] = bytearray(b'\x00')
 if "gt.speed_table" not in extensions:
 extensions["gt.speed_table"] = bytearray(b'\x00')

def instrument_appender(
 gt_inst_name, new_instr_num, in_wave_table, in_pulse_table,
 in_filter_table, in_speed_table, path=DEFAULT_INSTR_PATH
):
 """
 Load the named instrument's ins file and generate updated wavetables
 """

 ins_bytes = read_binary_file(constants.project_to_absolute_path(path + gt_inst_name + '.ins'))

 if ins_bytes[0:4] != b'GTI5':
 raise ChiptuneSAKValueError("Error: Invalid instrument file structure")
 file_index = 4

 # Strange, the wave/pulse/filter/vib_speedtable pointers come in with unrelocated values,
 # (seems like they'd be set to zero or something) but that's ok, since they'll be relocated
 # later in this method
 an_instrument = GtInstrument.from_bytes(new_instr_num, ins_bytes, file_index)
 file_index += GT_INSTR_BYTE_LEN

 tables = []
 for _ in range(4):
 a_table = get_table(file_index, ins_bytes)
 tables.append(a_table)
 file_index += a_table.row_cnt * 2 + 1

 # FUTURE: processing updates to these four tables and table pointers could be
 # loop-generalized instead of processed separately
 if tables[0].row_cnt == 0:
 an_instrument.wave_ptr = 0
 else:
 an_instrument.wave_ptr = in_wave_table.row_cnt + 1
 in_wave_table.append_table(tables[0])

 if tables[1].row_cnt == 0:
 an_instrument.pulse_ptr = 0
 else:
 an_instrument.pulse_ptr = in_pulse_table.row_cnt + 1
 in_pulse_table.append_table(tables[1])

 if tables[2].row_cnt == 0:
 an_instrument.filter_ptr = 0
 else:
 an_instrument.filter_ptr = in_filter_table.row_cnt + 1
 in_filter_table.append_table(tables[2])

 if tables[3].row_cnt == 0:
 an_instrument.vib_speedtable_ptr = 0
 else:
 an_instrument.vib_speedtable_ptr = in_speed_table.row_cnt + 1
 in_speed_table.append_table(tables[3])

 return (an_instrument, in_wave_table, in_pulse_table, in_filter_table, in_speed_table)

load GoatTracker v2 instrument (.ins file) and append to song
def add_gt_instrument_to_rchirp(rchirp_song, gt_inst_name, path=DEFAULT_INSTR_PATH):
 """
 Appends a instrument binary to the RChirp metadata extensions.

 Taking an "append-only" approach to adding instruments to RChirp metadata for
 the following reasons:
 1) If RChirp instruments were imported from a sng file, the four supporting tables
 can have code that is shared (entangled) between instruments. It would be more work
 to allow mutations (delete, move, etc.) on individual instruments (unlike SID-Wizard
 which keeps each instrument data completely separate).
 2) In practice, GoatTracker composers tend to use instrument numbers in order, so
 an append-only approach is flexible enough.

 :param rchirp_song: An RChirpSong instance
 :type rchirp_song: RChirpSong
 :param gt_inst_name: Filename of GoatTracker instrument (without path or .ins extension)
 :type gt_inst_name: str
 :param path: path from project root, defaults to 'res/gtInstruments/'
 :type path: str, optional
 """
 create_gt_metadata_if_missing(rchirp_song)
 extensions = rchirp_song.metadata.extensions

 new_instr_num = (len(extensions["gt.instruments"]) // GT_INSTR_BYTE_LEN) + 1

 (instr, wt, pt, ft, st) = instrument_appender(
 gt_inst_name,
 new_instr_num,
 GtTable.from_bytes(extensions["gt.wave_table"]),
 GtTable.from_bytes(extensions["gt.pulse_table"]),
 GtTable.from_bytes(extensions["gt.filter_table"]),
 GtTable.from_bytes(extensions["gt.speed_table"]))

 # append instrument
 extensions["gt.instruments"] += instr.to_bytes()

 # assign updated wavetables
 extensions["gt.wave_table"] = wt.to_bytes()
 extensions["gt.pulse_table"] = pt.to_bytes()
 extensions["gt.filter_table"] = ft.to_bytes()
 extensions["gt.speed_table"] = st.to_bytes()

class GTSong:
 """
 Contains parsed version of .sng file binary data.
 """

 def __init__(self):
 self.headers = GtHeader() #: goattracker file headers
 self.num_channels = 3 #: 3 or 6 voices
 self.subtune_orderlists = [[[], [], []]] #: Nested lists: Subtunes->channels->orderlist
 self.instruments = [] #: list of GtInstrument instances
 self.wave_table = GtTable() #: wave table
 self.pulse_table = GtTable() #: pulse table
 self.filter_table = GtTable() #: filter table
 self.speed_table = GtTable() #: speed table
 self.patterns = [[]] #: Nested lists: patterns->GtPatternRow instances

 def is_stereo(self):
 """
 Determines if this is stereo GoatTracker

 :return: True if stereo, False if not
 :rtype: bool
 """
 return self.num_channels >= 4

 def get_instruments_bytes(self):
 """
 Create native GT bytes for all the instruments (not including supporting tables)

 :return: byte represtation of all instruments
 :rtype: bytes
 """

 result = bytearray()
 for i in range(1, len(self.instruments)):
 result += self.instruments[i].to_bytes()
 return result

 def set_instruments_from_bytes(self, bytes):
 """
 Set GTSong's instruments from raw bytes (not including supporting tables)

 :param bytes: bytes containing instruments' data
 :type bytes: bytes
 """
 if len(bytes) % GT_INSTR_BYTE_LEN != 0:
 raise ChiptuneSAKValueError("Error: malformed instrument bytes")

 instruments = [GtInstrument()] # start with empty instrument number 0
 for i in range(len(bytes) // GT_INSTR_BYTE_LEN):
 an_instrument = GtInstrument.from_bytes(i + 1, bytes, i * GT_INSTR_BYTE_LEN)
 instruments.append(an_instrument)

 self.instruments = instruments

 def get_orderlist(self, an_index, file_bytes):
 """
 Parse out an orderlist from file_bytes starting at an_index

 Note: orderlist length byte is length -1
 e.g., orderlist CHN1: "00 04 07 0d 09 RST00" in file as 06 00 04 07 0d 09 FF 00
 length-1 (06), followed by 7 bytes

 :param an_index: index in file_bytes from which to start parsing
 :type an_index: int
 :param file_bytes: bytes containing orderlist
 :type file_bytes: bytes
 :return: an orderlist
 :rtype: bytes
 """
 length = file_bytes[an_index] + 1 # add one for restart
 an_index += 1

 orderlist = file_bytes[an_index:an_index + length]
 an_index += length
 # check that next-to-last byte is $FF
 if file_bytes[an_index - 2] != 255:
 raise ChiptuneSAKContentError(
 "Error: Did not find expected $FF RST endmark in channel's orderlist")

 return orderlist

 def is_2sid(self, index_at_start_of_orderlists, sng_bytes):
 """
 Heuristic to determine if .sng binary is 1SID or 2SID (aka "stereo")

 :param index_at_start_of_orderlists: index of start of orderlists in sng_bytes
 :type index_at_start_of_orderlists: int
 :param sng_bytes: bytes containing orderlists
 :type sng_bytes: bytes
 :return: True if 2SID, False if 1SID
 :rtype: bool
 """
 expected_num_orderlists_for_3sid = self.headers.num_subtunes * 3
 expected_num_orderlists_for_6sid = expected_num_orderlists_for_3sid * 2
 file_index = index_at_start_of_orderlists

 orderlist_count = 0
 while True:
 index_of_ff = sng_bytes[file_index] # get length (minus 1) of orderlist for voice
 if sng_bytes[file_index + index_of_ff] != 0xff: # if orderlist, will be $FF
 break
 orderlist_count += 1
 file_index += index_of_ff + 2 # account for the byte after the 0xff

 if orderlist_count == expected_num_orderlists_for_3sid:
 return False

 if orderlist_count == expected_num_orderlists_for_6sid:
 return True

 raise ChiptuneSAKContentError("Error: found %d orderlists (expected %d or %d)" \
 % (orderlist_count,
 expected_num_orderlists_for_3sid,
 expected_num_orderlists_for_6sid))

 def import_sng_file_to_parsed_gt(self, input_filename):
 """
 Parse a goat tracker '.sng' file and put it into a GTSong instance.
 Supports 1SID and 2SID (stereo) goattracker '.sng' files.

 :param input_filename: Filename for input .sng file
 :type input_filename: str
 """
 with open(input_filename, 'rb') as f:
 sng_bytes = f.read()

 self.import_sng_binary_to_parsed_gt(sng_bytes)

 def import_sng_binary_to_parsed_gt(self, sng_bytes):
 """
 Parse a goat tracker '.sng' binary and put it into a GTSong instance.
 Supports 1SID and 2SID (stereo) goattracker '.sng' file binaries.

 :param sng_bytes: Binary contents of a sng file
 :type sng_bytes: bytes
 """

 header = GtHeader()

 header.id = sng_bytes[0:4]

 if header.id != GT_FILE_HEADER:
 raise ChiptuneSAKContentError("Error: Did not find magic header")

 header.song_name = get_chars(sng_bytes[4:36])
 header.author_name = get_chars(sng_bytes[36:68])
 header.copyright = get_chars(sng_bytes[68:100])
 header.num_subtunes = sng_bytes[100]

 if header.num_subtunes > GT_MAX_SUBTUNES_PER_SONG:
 raise ChiptuneSAKContentError("Error: too many subtunes")

 file_index = 101
 self.headers = header

 # From goattracker documentation: (note: doesn't account for stereo sid)
 # 6.1.2 ChirpSong orderlists
 # ---------------------
 # The orderlist structure repeats first for channels 1,2,3 of first subtune,
 # then for channels 1,2,3 of second subtune etc., until all subtunes
 # have been gone thru.
 #
 # Offset Size Description
 # +0 byte Length of this channel's orderlist n, not counting restart pos.
 # +1 n+1 The orderlist data:
 # Values $00-$CF are pattern numbers
 # Values $D0-$DF are repeat commands
 # Values $E0-$FE are transpose commands
 # Value $FF is the RST endmark, followed by a byte that indicates
 # the restart position

 if self.is_2sid(file_index, sng_bytes): # check if this is a "stereo" sid
 self.num_channels = 6

 subtune_orderlists = []
 for _ in range(header.num_subtunes):
 channels_order_list = []
 for i in range(self.num_channels):
 channel_order_list = self.get_orderlist(file_index, sng_bytes)
 file_index += len(channel_order_list) + 1
 channels_order_list.append(channel_order_list)
 subtune_orderlists.append(channels_order_list)
 self.subtune_orderlists = subtune_orderlists

 # From goattracker documentation:
 # 6.1.3 Instruments
 # -----------------
 # Offset Size Description
 # +0 byte Amount of instruments n
 #
 # Then, this structure repeats n times for each instrument. Instrument 0 (the
 # empty instrument) is not stored.
 #
 # Offset Size Description
 # +0 byte Attack/Decay
 # +1 byte Sustain/Release
 # +2 byte Wavepointer
 # +3 byte Pulsepointer
 # +4 byte Filterpointer
 # +5 byte Vibrato param. (speedtable pointer)
 # +6 byte Vibraro delay
 # +7 byte Gateoff timer
 # +8 byte Hard restart/1st frame waveform
 # +9 16 Instrument name

 instruments = [GtInstrument()] # start with empty instrument number 0

 inst_count = sng_bytes[file_index] # doesn't include the NOP instrument 0
 file_index += 1

 for i in range(inst_count):
 an_instrument = GtInstrument.from_bytes(i + 1, sng_bytes, file_index)
 instruments.append(an_instrument)
 file_index += GT_INSTR_BYTE_LEN

 self.instruments = instruments

 # From goattracker documentation:
 # 6.1.4 Tables
 # ------------
 # This structure repeats for each of the 4 tables (wavetable, pulsetable,
 # filtertable, speedtable).
 #
 # Offset Size Description
 # +0 byte Amount n of rows in the table
 # +1 n Left side of the table
 # +1+n n Right side of the table

 tables = []
 for i in range(4):
 a_table = get_table(file_index, sng_bytes)
 tables.append(a_table)
 file_index += a_table.row_cnt * 2 + 1

 (self.wave_table, self.pulse_table, self.filter_table, self.speed_table) = tables

 # From goattracker documentation:
 # 6.1.5 Patterns header
 # ---------------------
 # Offset Size Description
 # +0 byte Number of patterns n
 #
 # 6.1.6 Patterns
 # --------------
 # Repeat n times, starting from pattern number 0.
 #
 # Offset Size Description
 # +0 byte Length of pattern in rows m
 # +1 m*4 Groups of 4 bytes for each row of the pattern:
 # 1st byte: Notenumber
 # Values $60-$BC are the notes C-0 - G#7
 # Value $BD is rest
 # Value $BE is keyoff
 # Value $BF is keyon
 # Value $FF is pattern end
 # 2nd byte: Instrument number ($00-$3F)
 # 3rd byte: Command ($00-$0F)
 # 4th byte: Command databyte

 num_patterns = sng_bytes[file_index]
 file_index += 1
 patterns = []

 for pattern_num in range(num_patterns):
 a_pattern = []
 num_rows = sng_bytes[file_index]
 if num_rows > GT_MAX_ROWS_PER_PATTERN:
 raise ChiptuneSAKContentError("Error: Too many rows in a pattern")
 file_index += 1
 for row_num in range(num_rows):
 a_row = GtPatternRow(
 note_data=sng_bytes[file_index],
 instr_num=sng_bytes[file_index + 1],
 command=sng_bytes[file_index + 2],
 command_data=sng_bytes[file_index + 3],
)
 if not ((GT_NOTE_OFFSET <= a_row.note_data <= GT_MAX_NOTE_VALUE)
 or a_row.note_data == GT_PAT_END):
 raise ChiptuneSAKContentError("Error: unexpected note data value")
 if a_row.instr_num > GT_MAX_INSTR_PER_SONG:
 raise ChiptuneSAKValueError("Error: instrument number out of range")
 if a_row.command > 0x0F:
 raise ChiptuneSAKValueError("Error: command number out of range")
 file_index += 4
 a_pattern.append(a_row)
 patterns.append(a_pattern)

 self.patterns = patterns

 if file_index != len(sng_bytes):
 raise ChiptuneSAKContentError("Error: bytes parsed didn't match file bytes length")

 def midi_note_to_pattern_note(self, midi_note, octave_offset=0):
 """
 Convert midi note value to pattern note value

 :param midi_note: midi note number (Note: Lowest midi note allowed = 12 (C0_MIDI_NUM)
 :type midi_note: int
 :param octave_offset: Should always be zero unless some weird midi offset exists
 :type octave_offset: int
 :return: GT note value
 :rtype: int
 """
 gt_note_value = midi_note + (GT_NOTE_OFFSET - constants.C0_MIDI_NUM) + (-1 * octave_offset * 12)
 if not (GT_NOTE_OFFSET <= gt_note_value <= GT_MAX_NOTE_VALUE):
 raise ChiptuneSAKValueError(f"Error: illegal gt note data value {gt_note_value} from midi {midi_note}")
 return gt_note_value

 def make_orderlist_entry(self, pattern_number, transposition, repeats, prev_transposition):
 """
 Makes orderlist entries from a pattern number, a transposition, and a number of repeats.

 :param pattern_number: pattern number
 :type pattern_number: int
 :param transposition: transposition in semitones
 :type transposition: int
 :param repeats: Number of times to repeat
 :type repeats: int
 :param prev_transposition: Previous transposition
 :type prev_transposition: int
 :return: list of orderlist command
 :rtype: list of int
 """
 retval = []
 # Only insert transposition (absolute) when it changes
 if transposition == prev_transposition:
 transposition = None
 elif -15 <= transposition <= 14: # Check that transposition is in allowed range
 transposition += 0xF0 # offset for transpositions
 else: # Instead of dying, fix transpositions by doing octave offsets until it is within range.
 while transposition > 14:
 transposition -= 12
 while transposition < -15:
 transposition += 12
 if not (-15 <= transposition <= 14):
 raise ChiptuneSAKValueError("Error: bad transposition = %d" % transposition)
 transposition += 0xF0

 # Longest possible repeat is 16, so generate as many of those as needed
 while repeats >= 16:
 if transposition is not None:
 retval.append(transposition) # If no transposition, leave it off.
 transposition = None # Only add transposition once
 retval.append(0xD0) # Repeat 16 times
 retval.append(pattern_number)
 repeats -= 16

 # Now do the last one if there are any left (usually this is the only part accessed)
 if repeats > 0:
 if transposition is not None:
 retval.append(transposition)
 if repeats != 1: # If only one time, no need to put anything in.
 retval.append(repeats - 1 + 0xD0) # Repeat N times
 retval.append(pattern_number)

 if not all(0 <= x <= 0xFF for x in retval):
 raise ChiptuneSAKValueError("Error: Byte value error in orderlist")
 return retval

 def export_parsed_gt_to_gt_binary(self):
 """
 Convert parsed_gt into a goattracker .sng binary.

 :return: a GoatTracker sng file binary
 :rtype: bytes
 """

 gt_binary = bytearray()

 gt_binary += self.headers.to_bytes()

 for subtune in self.subtune_orderlists:
 for channel_orderlist in subtune:
 # orderlist length minus 1, strange but true
 gt_binary.append(len(channel_orderlist) - 1)
 gt_binary += bytes(channel_orderlist)

 # number of instruments (not counting NOP instrument number 0)
 gt_binary.append(len(self.instruments) - 1)

 gt_binary += self.get_instruments_bytes()
 gt_binary += self.wave_table.to_bytes()
 gt_binary += self.pulse_table.to_bytes()
 gt_binary += self.filter_table.to_bytes()
 gt_binary += self.speed_table.to_bytes()

 gt_binary.append(len(self.patterns)) # number of patterns

 for pattern in self.patterns:
 gt_binary.append(len(pattern))
 for row in pattern:
 gt_binary += row.to_bytes()

 return gt_binary

 def import_parsed_gt_to_rchirp(self, subtune_num=0):
 """
 Convert the parsed GoatTracker file into rchirp

 In GoatTracker any channel can change all the channels' tempos or just its own tempo
 at any time. This is too complex for RChirp representation. So this code simulates
 the playback on a frame-by-frame (aka jiffy) basis, "unrolling" the tempos.
 What's left is only per-channel tempo changes, which can be different from the other
 channels (an important tracker feature worth preserving).

 The patterns and voice orderlists found in the original GoatTracker song cannot be
 mapped 1-to-1 with rchirp.patterns and rchirp.voices[].orderlist without all of this
 complex processing. However, we expect many C64 game music engines to have patterns
 and orderlists that can be directly mapped without much effort.

 :param subtune_num: The subtune number to convert to rchirp, defaults to 0
 :type subtune_num: int, optional
 :return: rchirp song instance
 :rtype: RChirpSong
 """

 rchirp_song = rchirp.RChirpSong()

 rchirp_song.metadata.name = self.headers.song_name
 rchirp_song.metadata.composer = self.headers.author_name
 rchirp_song.metadata.copyright = self.headers.copyright

 # init state holders for each channel to use as we step through each tick (aka frame)
 channels_state = \
 [GtChannelState(i + 1, self.subtune_orderlists[subtune_num][i]) for i in range(self.num_channels)]

 rchirp_song.voices = [rchirp.RChirpVoice(rchirp_song) for i in range(self.num_channels)]

 # TODO: Make track assignment to SID groupings not hardcoded
 if self.is_stereo:
 rchirp_song.voice_groups = [(1, 2, 3), (4, 5, 6)]
 else:
 rchirp_song.voice_groups = [(1, 2, 3)]

 # Handle the rarely-used sneaky default global tempo setting
 # from docs:
 # For very optimized songdata & player you can refrain from using any pattern
 # commands and rely on the instruments' step-programming. Even in this case, you
 # can set song startup default tempo with the Attack/Decay parameter of the last
 # instrument (63/0x3F), if you otherwise leave this instrument unused.

 # TODO: This code block is untested
 if len(self.instruments) == GT_MAX_INSTR_PER_SONG:
 ad = self.instruments[GT_MAX_INSTR_PER_SONG - 1].attack_decay
 if 0x03 <= ad <= 0x7F:
 for cs in channels_state:
 cs.curr_tempo = ad

 global_tick = -1
 # Step through each tick (frame). For each tick, evaluate the state of each channel.
 # Continue until all channels have hit the end of their respective orderlists
 while not all(cs.restarted for cs in channels_state):
 # When not using multispeed, tempo = ticks per row = screen refreshes per row.
 # 'Ticks' on C64 are also 'frames' or 'jiffies'. Each tick in PAL is around 20ms,
 # and ~16.7‬ms on NTSC.
 # (in contrast, for a multispeed of 2, there would be two music updates per frame)
 global_tick += 1
 global_tempo_change = None

 for i, cs in enumerate(channels_state):
 # Either reduce time left on this row, or get the next new goattracker data row
 gt_row = cs.next_tick(self)
 if gt_row is None: # if we didn't advance to a new row...
 continue

 rc_row = rchirp.RChirpRow()
 rc_row.milliframe_num = global_tick * 1000
 rc_row.milliframe_len = cs.curr_tempo * 1000

 # KeyOff (only recorded if there's a curr_note defined)
 if cs.row_has_key_off:
 rc_row.note_num = cs.curr_note
 rc_row.gate = False

 # KeyOn (only recorded if there's a curr_note defined)
 if cs.row_has_key_on:
 rc_row.note_num = cs.curr_note
 rc_row.instr_num = gt_row.instr_num # Why not...
 rc_row.gate = True

 # if note_data is an actual note, then cs.curr_note has been updated
 elif cs.row_has_note:
 rc_row.note_num = cs.curr_note
 rc_row.instr_num = gt_row.instr_num
 rc_row.gate = True

 # process tempo changes
 # Note: local_tempo_update and global_tempo_update init to None when new row fetched
 if cs.local_tempo_update is not None:
 # Apply local (single channel) tempo change
 if cs.local_tempo_update >= 2:
 cs.curr_funktable_index = None
 cs.curr_tempo = cs.local_tempo_update
 else: # it's an index to a funktable tempo
 cs.curr_funktable_index = cs.local_tempo_update
 # convert into a normal tempo change
 cs.curr_tempo = GtChannelState.funktable[cs.curr_funktable_index]
 rc_row.milliframe_len = cs.curr_tempo * 1000

 # this channel signals a global tempo change that will affect all the channels
 # once out of this per-channel loop
 elif cs.global_tempo_update is not None:
 global_tempo_change = cs.global_tempo_update

 rchirp_song.voices[i].append_row(rc_row)

 # By this point, we've passed through all channels for this particular tick
 # If more than one channel made a tempo change, the global tempo change on the highest
 # voice/channel number wins (consistent with goattracker behavior)
 if global_tempo_change is not None:
 for j, cs in enumerate(channels_state): # Time to apply the global changes:
 if global_tempo_change >= 2:
 cs.curr_funktable_index = None # funk tempo mode off
 new_tempo = global_tempo_change
 else: # it's an index to a funktable tempo
 cs.curr_funktable_index = global_tempo_change # stateful funky tracking
 # convert into a normal tempo change
 new_tempo = GtChannelState.funktable[cs.curr_funktable_index]

 current_rc_row = rchirp_song.voices[j].last_row

 # If row state is in progress, leave its remaining ticks alone.
 # But if it's the very start of a new row, then override with the new global tempo
 if cs.first_tick_of_row:
 cs.row_ticks_left = new_tempo
 current_rc_row.milliframe_len = new_tempo * 1000

 cs.curr_tempo = new_tempo

 # Create note offs once all channels have hit their orderlist restart one or more times
 # Ok, cheesy hack here. The loop above repeats until all tracks have had a chance to restart,
 # but it allows each voice to load in one row after that point. Taking advantage of that, we
 # modify that row with note off events, looking backwards to previous rows to see what the last
 # note was to use in the note off events.
 for i, cs in enumerate(channels_state):
 rows = rchirp_song.voices[i].rows
 reversed_index = list(reversed(list(rows.keys())))
 for seek_index in reversed_index[1:]: # skip largest row num, and work backwards
 if rows[seek_index].note_num is not None:
 rows[reversed_index[0]].note_num = rows[seek_index].note_num
 rows[reversed_index[0]].gate = False # gate off
 break

 rchirp_song.set_row_delta_values()

 rchirp_song.metadata.extensions["gt.instruments"] = self.get_instruments_bytes()
 rchirp_song.metadata.extensions["gt.wave_table"] = self.wave_table.to_bytes()
 rchirp_song.metadata.extensions["gt.pulse_table"] = self.pulse_table.to_bytes()
 rchirp_song.metadata.extensions["gt.filter_table"] = self.filter_table.to_bytes()
 rchirp_song.metadata.extensions["gt.speed_table"] = self.speed_table.to_bytes()

 # Before returning the rchirp song, might as well make use of our test cases here
 rchirp_song.integrity_check() # Will throw assertions if there are any problems
 assert rchirp_song.is_contiguous(), "Error: rchirp representation should not be sparse"

 return rchirp_song

 def add_gt_instrument_to_parsed_gt(self, gt_inst_name, path=DEFAULT_INSTR_PATH):
 """
 Append instrument to parsed gt instance.

 Recommend using add_gt_instrument_to_rchirp() when adding instruments
 outside of this module (not adding instruments directly to GTSong).

 :param gt_inst_name: Filename of GoatTracker instrument (without path or .ins extension)
 :type gt_inst_name: str
 :param path: path from project root, defaults to 'res/gtInstruments/'
 :type path: str, optional

 """
 new_instr_num = len(self.instruments) # no +1 here

 (instr, self.wave_table, self.pulse_table, self.filter_table, self.speed_table) = \
 instrument_appender(gt_inst_name,
 new_instr_num,
 self.wave_table,
 self.pulse_table,
 self.filter_table,
 self.speed_table)

 self.instruments.append(instr)

 def export_rchirp_to_parsed_gt(self, rchirp_song, end_with_repeat=False, max_pattern_len=DEFAULT_MAX_PAT_LEN):
 """
 Populate GTSong instance from RChirp data.

 Instrument assignments:
 Before calling this method, the rchirp can have GoatTracker instruments appended to it
 using add_gt_instrument_to_rchirp(). Any instrument numbers found in the RChirp for which
 there is no corresponding instrument in the rchirp_song.metadata.extensions["gt.instruments"]
 will cause this code to load "SimpleTriangle" for that instrument number.

 :param rchirp_song: The rchirp song to convert
 :type rchirp_song: RChirpSong
 :param end_with_repeat: True if song should repeat when finished, defaults to False
 :type end_with_repeat: bool, optional
 :param max_pattern_len: If creating orderlist/patterns, sets the maximum pattern lengths
 :type max_pattern_len: int, optional
 """

 TRUNCATE_IF_TOO_BIG = True

 self.__init__() # clear out anything that might be in this GTSong instance

 headers = GtHeader(
 song_name=rchirp_song.metadata.name[:32],
 author_name=rchirp_song.metadata.composer[:32],
 copyright=rchirp_song.metadata.copyright[:32],
 num_subtunes=1)
 self.headers = headers

 is_stereo = len(rchirp_song.voices) >= 4
 if len(rchirp_song.voices) > 6:
 raise ChiptuneSAKContentError("Error: Stereo SID can only support up to 6 voices")

 if is_stereo:
 num_channels = 6
 else:
 num_channels = 3
 self.num_channels = num_channels

 patterns = [] # can be shared across all channels
 orderlists = [[] for _ in range(num_channels)] # Note: this is bad: [[]] * len(tracknums)
 instrument_nums_seen = set()
 too_many_patterns = False

 # When lowering RChirp towards a native format, if orderlists/patterns are present,
 # those should be used. These could have come about by chiptuneSAK compression (aka
 # pattern discovery), or from having created RChirp from a source that uses patterns.
 # If no orderlists/patterns are present, the lowerer will have to create them.
 if rchirp_song.has_patterns():
 # Convert the patterns to goattracker patterns
 for ip, p in enumerate(rchirp_song.patterns):
 pattern = [] # initialize new empty pattern
 for r in p.rows:
 gt_row = GtPatternRow() # make a new empty pattern row
 if r.gate:
 gt_row.note_data = self.midi_note_to_pattern_note(r.note_num)
 gt_row.instr_num = r.instr_num
 instrument_nums_seen.add(r.instr_num)
 elif r.gate is False: # if ending a note ('false' check because tri-state)
 gt_row.note_data = GT_KEY_OFF
 gt_row.instr_num = r.instr_num
 if r.new_milliframe_tempo is not None:
 gt_row.command = GT_TEMPO_CHNG_CMD
 # insert local channel tempo change
 gt_row.command_data = r.new_milliframe_tempo // 1000 + 0x80
 pattern.append(gt_row)
 pattern.append(PATTERN_END_ROW) # finish with end row marker
 patterns.append(pattern)

 for i, v in enumerate(rchirp_song.voices):
 prev_transposition = 0 # Start out each voice with default transposition of 0
 for entry in v.orderlist:
 ol_entry = self.make_orderlist_entry(
 entry.pattern_num,
 entry.transposition,
 entry.repeats,
 prev_transposition,
)
 orderlists[i].extend(ol_entry)
 prev_transposition = entry.transposition

 # Must create our own orderlist
 else:
 curr_pattern_num = 0

 # for each channel, get its rows, and create patterns, adding them to the
 # channel's orderlist
 for i, rchirp_voice in enumerate(rchirp_song.voices):
 rchirp_rows = rchirp_voice.rows
 pattern_row_index = 0
 pattern = [] # create a new, empty pattern
 max_row = max(rchirp_rows)
 prev_instrument = 1

 # Iterate across row num span (inclusive). Would normally iterated over
 # sorted rchirp_rows dict keys, but since rchirp is allowed to be sparse
 # we're being careful here to insert an empty row for missing row num keys
 for j in range(max_row + 1):

 # Convert each rchirp_row into the gt_row (used for binary gt row representation)
 if j in rchirp_rows:
 rchirp_row = rchirp_rows[j]
 gt_row = GtPatternRow()

 if rchirp_row.gate: # if starting a note
 gt_row.note_data = self.midi_note_to_pattern_note(rchirp_row.note_num)
 if not (GT_NOTE_OFFSET <= gt_row.note_data <= GT_MAX_NOTE_VALUE):
 raise ChiptuneSAKValueError('Error: Illegal note number')

 if rchirp_row.new_instrument is not None:
 gt_row.instr_num = rchirp_row.new_instrument
 prev_instrument = rchirp_row.new_instrument
 instrument_nums_seen.add(rchirp_row.new_instrument)
 else:
 # unlike SID-Wizard which only asserts instrument changes (on any row),
 # goattracker asserts the current instrument with every note
 # (goattracker can assert instrument without note, but that's a NOP)
 gt_row.instr_num = prev_instrument

 elif rchirp_row.gate is False: # if ending a note ('false' check because tri-state)
 gt_row.note_data = GT_KEY_OFF

 if rchirp_row.new_milliframe_tempo is not None:
 gt_row.command = GT_TEMPO_CHNG_CMD
 # insert local channel tempo change
 gt_row.command_data = rchirp_row.new_milliframe_tempo // 1000 + 0x80
 pattern.append(gt_row)
 else:
 pattern.append(PATTERN_EMPTY_ROW)

 pattern_row_index += 1
 # max_pattern_len notes: index 0 to len-1 for data, index len for 0xFF pattern end mark
 if pattern_row_index == max_pattern_len: # if pattern is full
 pattern.append(PATTERN_END_ROW) # finish with end row marker
 patterns.append(pattern)
 orderlists[i].append(curr_pattern_num) # append to orderlist for this channel
 curr_pattern_num += 1
 if curr_pattern_num >= GT_MAX_PATTERNS_PER_SONG:
 too_many_patterns = True
 break
 pattern = []
 pattern_row_index = 0
 if too_many_patterns:
 break
 if len(pattern) > 0: # if there's a final partially-filled pattern, add it
 pattern.append(PATTERN_END_ROW)
 patterns.append(pattern)
 orderlists[i].append(curr_pattern_num)
 curr_pattern_num += 1
 if curr_pattern_num >= GT_MAX_PATTERNS_PER_SONG:
 too_many_patterns = True
 if too_many_patterns:
 if TRUNCATE_IF_TOO_BIG:
 print("Warning: too much note data, truncated patterns")
 else:
 raise ChiptuneSAKContentError("Error: More than %d goattracker patterns created" % GT_MAX_PATTERNS_PER_SONG)

 # Usually, songs repeat. Each channel's orderlist ends with RST00, which means restart at the
 # 1st entry in that channel's pattern list (note: orderlist is normally full of pattern numbers,
 # but the number after RST is not a pattern number, but an index back into that channel's orderlist)
 # As far as I can tell, people create an infinite loop at the end when they don't want a song to
 # repeat, so that's what this code can do.
 #
 # end_with_repeat == False in no way implies that all tracks will restart at the same time
 #
 # Design note: Thought about moving the repeat-pattern injection (end_with_repeat) into a
 # GTSong-only method, but decided against it, since RChirp-related methods are where patterns
 # are created/modified.

 if not end_with_repeat and not too_many_patterns:
 # create a new empty pattern for all channels to loop on forever
 # and add to the end of each orderlist
 loop_pattern = []
 loop_pattern.append(GtPatternRow(note_data=GT_KEY_OFF))
 loop_pattern.append(PATTERN_END_ROW)
 patterns.append(loop_pattern)
 loop_pattern_num = len(patterns) - 1
 for i in range(num_channels):
 orderlists[i].append(loop_pattern_num) # pattern caps all voices' orderlists

 for i in range(num_channels):
 orderlists[i].append(GT_OL_RST) # all patterns end with restart indicator
 if end_with_repeat: # if each voice starts completely over...
 orderlists[i].append(0) # index of start of channel order list
 else:
 orderlists[i].append(len(orderlists[i]) - 2) # index of the empty loop pattern

 self.patterns = patterns
 self.subtune_orderlists = [orderlists] # only one subtune, so nested in a pair of list brackets

 create_gt_metadata_if_missing(rchirp_song)
 extensions = rchirp_song.metadata.extensions

 # See if there's any instrument data to import from the RChirp
 if "gt.instruments" in extensions:
 self.set_instruments_from_bytes(extensions["gt.instruments"])
 self.wave_table = GtTable.from_bytes(extensions["gt.wave_table"])
 self.pulse_table = GtTable.from_bytes(extensions["gt.pulse_table"])
 self.filter_table = GtTable.from_bytes(extensions["gt.filter_table"])
 self.speed_table = GtTable.from_bytes(extensions["gt.speed_table"])

 # special instrument number that can be used for global tempo settings (rarely seen):
 ignore = GT_MAX_INSTR_PER_SONG - 1

 # find all instrument numbers for which an instrument binary is not already defined
 # (defined from importing from an sng and/or using add_gt_instrument_to_rchirp())
 rchirp_inst_count = len(rchirp_song.metadata.extensions["gt.instruments"])
 unmapped_inst_nums = [x for x in instrument_nums_seen if x > rchirp_inst_count and x != ignore]

 # since we're in an instrument append-only world (at least for now), just append
 # simple triangle instrument up to the max unmatched instrument
 # This can create a lot of redundant instruments, e.g., for a seen set like 6, 3, 9, it will
 # create the Simple Triangle up to 9 times (slots 1 through 9). Currently, we don't think it's
 # the job of goat_tracker to map an arbitrary set of instrument numbers to a consecutive
 # list starting from 1 (e.g., 3->1, 6->2, 9->3) but perhaps later, that functionality will
 # exist here.
 if len(unmapped_inst_nums) > 0:
 for i in range(rchirp_inst_count, max(unmapped_inst_nums) + 1):
 self.add_gt_instrument_to_parsed_gt("SimpleTriangle")

Used when "running" the channels to convert them to note on/off events in time
class GtChannelState:
 # The two funktable entries are shared by all channels using a funktempo, so we have it as a
 # class-side var. Note, this approach won't work if we want GtChannelState instances belonging
 # to and processing different songs at the same time (seems unlikely).
 # FUTURE: add instrument handling
 # FUTURE: ignoring multispeed considerations for now (would act as a simple multiplier for each)
 funktable = GT_DEFAULT_FUNKTEMPOS

 def __init__(self, voice_num, channel_orderlist):
 self.voice_num = voice_num
 self.orderlist_index = -1 # -1 = bootstrapping value only, None = stuck in loop with no patterns
 self.row_index = -1 # -1 = bootstrapping value only
 self.pat_remaining_plays = 1 # default is to play a pattern once
 self.row_ticks_left = 1 # required value when bootstrapping
 self.first_tick_of_row = False
 self.curr_transposition = 0
 self.curr_note = None # converted to midi note number
 self.row_has_note = False # if True, curr_note is immediately set
 self.row_has_key_on = False # gate bit mask on, reasserting last played note (found in self.curr_note)
 self.row_has_key_off = False # gate bit mask off
 self.local_tempo_update = None
 self.global_tempo_update = None
 self.restarted = False # channel has encountered restart one or more times
 self.channel_orderlist = channel_orderlist # just this channel's orderlist from the subtune
 self.curr_funktable_index = None # None = no funk tempos, 0 or 1 indicates current funktable index
 self.curr_tempo = GT_DEFAULT_TEMPO

 # position atop first pattern in orderlist for channel
 self.__inc_orderlist_to_next_pattern()

 # Advance channel/voice by a tick. This will either:
 # 1) decrement a row's remaining ticks by one, or
 # 2) if the row's jiffies are spent, return the next row (if any)
 # Returns None if not returning a new row
 def next_tick(self, a_song):
 self.first_tick_of_row = False

 # If stuck in an orderlist loop that doesn't contain a pattern, then there's nothing to do
 if self.orderlist_index is None:
 return None

 self.row_ticks_left -= 1 # decrement ticks remaining in this row
 assert self.row_ticks_left >= 0, "Error: Can't have negative tick values"

 # if not advancing to a new row (0 ticks left), then we're done here
 if self.row_ticks_left > 0:
 return None

 new_row_duration = None
 self.inc_to_next_row(a_song.patterns) # finished last pattern row, advance to the next
 # get the current row in the current pattern from this channel's orderlist
 row = copy.deepcopy(a_song.patterns[self.channel_orderlist[self.orderlist_index]][self.row_index])

 # If row contains a note, transpose if necessary (0 = no transform)
 if GT_NOTE_OFFSET <= row.note_data < GT_REST: # range $60 (C0) to $BC (G#7)
 note = row.note_data + self.curr_transposition
 assert note >= GT_NOTE_OFFSET, "Error: transpose dropped note below midi C0"
 # According to docs, allowed to transpose +3 halfsteps above the highest note (G#7)
 # that can be entered in the GT GUI, to create a B7
 assert note <= GT_MAX_NOTE_VALUE, "Error: transpose raised note above midi B7"
 self.curr_note = pattern_note_to_midi_note(note)
 self.row_has_note = True

 # GT_REST ($BD/189, gt display "..."): A note continues through rest rows. Rest does not mean
 # what it would in sheet music. For our purposes, we're ignoring it

 # GT_KEY_OFF ($BE/190, gt display "---"): Unsets the gate bit mask. This starts the release phase
 # of the ADSR.
 # Going to ignore any effects gateoff timer and hardrestart values might have on perceived note end
 if row.note_data == GT_KEY_OFF:
 if self.curr_note is not None:
 self.row_has_key_off = True

 # GT_KEY_ON ($BF/191, gt display "+++"): Sets the gate bit mask (ANDed with data from the wavetable).
 # If no prior note has been started, then nothing will happen. If a note is playing,
 # nothing will happen (to the note, to the instrument, etc.). If a note was turned off,
 # this will restart it, but will not restart the instrument.
 if row.note_data == GT_KEY_ON:
 if self.curr_note is not None:
 self.row_has_key_on = True

 # Notes on funktempo (all this logic gleaned from reading through gplay.c)
 #
 # Funktempo allows switching between two tempos on alternating pattern rows, to achieve
 # a "swing" or more organic feel.
 # - for non-multispeed songs, it defaults to 9 and 6
 #
 # The funktempo command is $E followed by an index to a single row in the speed table
 # - The left/right values in the speedtable row contain the two (alternating) tempo values
 # - Under the covers (in gplay.c), the array funktable[2] holds the two tempos
 # - e.g., command E04 points to speedtable at index 4. If the speedtable row contains
 # 01:09 06, then the alternating tempos are 9 and 6. For a 4x-multispeed, these
 # would need to be set instead to 01:24 18
 # - the two values in funktable[] are global to all participating channels
 # - The command applies to all channels (3 or 6 for stereo) and all channels are set to
 # tempo 0
 #
 # The tempo command is $F, and "tempos" $00 and $01 change all channels to the tempo that's
 # been previously set in funktable[0] or funktable[1] respectively, and every subsequent
 # row will alternate between the [0] and [1] entries of the funktable. In otherwords,
 # you can choose which half of the funktempo to start with.
 # - Values $80 and $81 are like $00 and $01, but apply funktempo to just the current channel
 # - Since the $E command sets all tempos to 0 (see above), it will always start with
 # funktable[0]'s tempo (set by the left-side entry in the speed table). But $F can choose
 # to start with the (previously-set) first or second value in the funktempo pair.

 if row.command == 0x0E: # funktempo command
 speed_table_index = row.command_data
 if speed_table_index > a_song.speed_table.row_cnt:
 raise ChiptuneSAKContentError("Error: speed table index %d too big for table of size %d"
 % (speed_table_index, a_song.speed_table.row_cnt))

 # look up the two funk tempos in the speed table and set the channel-shared funktable
 speed_table_index -= 1 # convert to zero-indexing
 GtChannelState.funktable[0] = a_song.speed_table.left_col[speed_table_index]
 GtChannelState.funktable[1] = a_song.speed_table.right_col[speed_table_index]

 new_row_duration = GtChannelState.funktable[0]

 # Record global funktempo change
 self.global_tempo_update = 0 # 0 will later become the tempo in funktable entry 0
 elif row.command == GT_TEMPO_CHNG_CMD:
 # From docs:
 # Values $03-$7F set tempo on all channels, values $83-$FF only on current channel (subtract
 # $80 to get actual tempo). Tempos $00-$01 recall the funktempo values set by EXY command.

 # Note: The higher voice number seems to win ties on simultaneous speed changes

 if row.command_data in [0x02, 0x82]:
 raise ChiptuneSAKValueError(
 "Unimplemented: Don't know how to support tempo change with value %d" % row.command_data)

 new_row_duration = row.command_data & 127 # don't care if it's global or local
 if new_row_duration < 2:
 new_row_duration = GtChannelState.funktable[new_row_duration]

 # Record global tempo change
 # From looking at the gt source code (at least for the goat tracker gui's gplay.c)
 # when a CMD_SETTEMPO happens (for one or for all three/six channels), the tempos immediately
 # change, but the ticks remaining on each channel's current row (in progress) is left alone --
 # another detail that would have been nice to have had in the documentation.
 if 0x03 <= row.command_data <= 0x7F:
 self.global_tempo_update = row.command_data

 # Record tempo change for just the given channel
 if 0x83 <= row.command_data <= 0xFF:
 self.local_tempo_update = row.command_data - 0x80

 # Record global funktempo change (funktable tempo entry 0 or 1)
 if 0x00 <= row.command_data <= 0x01:
 self.global_tempo_update = row.command_data

 # Record funktempo change for just the given channel (funktable tempo entry 0 or 1)
 if 0x80 <= row.command_data <= 0x81:
 self.global_tempo_update = row.command_data - 0x80
 else:
 # given no tempo command on this row (0x0E or 0x0F), if we're in funktempo mode, time to alternate
 # our funktempo
 if self.curr_funktable_index is not None:
 self.curr_funktable_index ^= 1
 self.local_tempo_update = self.curr_funktable_index
 new_row_duration = GtChannelState.funktable[self.curr_funktable_index]

 # init duration of this row
 # (if it hasn't started to count down, a row's init duration can get overwritten by
 # another channel's global temp setting, performed later in this code)
 if new_row_duration is not None:
 self.row_ticks_left = new_row_duration
 else:
 self.row_ticks_left = self.curr_tempo

 # FUTUREs: Possibly handle some of the (below) commands in the future?
 # from docs:
 # Command 1XY: Portamento up. XY is an index to a 16-bit speed value in the speedtable.
 #
 # Command 2XY: Portamento down. XY is an index to a 16-bit speed value in the speedtable.
 #
 # Command 3XY: Toneportamento. Raise or lower pitch until target note has been reached. XY is an index
 # to a 16-bit speed value in the speedtable, or $00 for "tie-note" effect (move pitch instantly to
 # target note)
 #
 # Command DXY: Set mastervolume to Y, if X is $0. If X is not $0, value XY is
 # copied to the timing mark location, which is playeraddress+$3F.

 return row

 # Advance to next row in pattern. If pattern end, then go to row 0 of next pattern in orderlist
 def inc_to_next_row(self, patterns):
 self.row_index += 1 # init val is -1
 self.row_has_note = self.row_has_key_on = self.row_has_key_off = False
 self.local_tempo_update = self.global_tempo_update = None
 self.first_tick_of_row = True
 row = patterns[self.channel_orderlist[self.orderlist_index]][self.row_index]
 if row == PATTERN_END_ROW:
 self.pat_remaining_plays -= 1
 assert self.pat_remaining_plays >= 0, "Error: negative number of remaining plays for pattern"
 self.row_index = 0 # all patterns are guaranteed to start with at least one meaningful (not end mark) row
 if self.pat_remaining_plays == 0: # all done with this pattern, moving on
 self.__inc_orderlist_to_next_pattern()

 def __inc_orderlist_to_next_pattern(self):
 self.pat_remaining_plays = 1 # patterns default to one playthrough unless otherwise specified
 while True:
 self.orderlist_index += 1 # bootstraps at -1
 a_byte = self.channel_orderlist[self.orderlist_index]

 # parse transpose
 # Transpose is in half steps. Transposes changes are absolute, not additive.
 # If transpose combined with repeat, transpose must come before a repeat
 # Testing shows transpose ranges from '-F' (225) to '+E' (254) in orderlist
 # Bug in goattracker documentation: says range is $E0 (224) to $FE (254)
 # I'm assuming byte 224 is never used in orderlists
 if a_byte == 0xE0:
 raise ChiptuneSAKValueError("Unimplemented: Don't believe byte E0 should occur in the orderlist")
 if 0xE1 <= a_byte <= 0xFE: # F0 = +0 = no transposition
 self.curr_transposition = a_byte - 0xF0 # transpose range is -15 to +14
 continue

 # parse repeat
 # Repeat values 1 to 16. In tracker, instead of R0..RF, it's R1..RF,R0
 # i.e., 'R0'=223=16reps, 'RF'=222=15 reps, 'R1'=208=1rep
 # Note: Repeat n really means repeat n-1, so it's actually "number of times to play"
 # So R1 (repeat 1) is essentially a NOP
 if 0xD0 <= a_byte <= 0xDF:
 self.pat_remaining_plays = a_byte - 0xCF
 continue

 # parse RST (restart)
 if a_byte == GT_OL_RST: # RST ($FF)
 self.restarted = True

 start_index = self.channel_orderlist[
 self.orderlist_index + 1] # byte following RST is orderlist restart index
 end_index = self.orderlist_index # byte containing RST
 self.orderlist_index = self.channel_orderlist[self.orderlist_index + 1] # perform orderlist "goto" jump
 # check if there's at least one pattern between the restart location and the RST
 if sum(1 for p in self.channel_orderlist[start_index:end_index] if p < GT_MAX_PATTERNS_PER_SONG) == 0:
 self.orderlist_index = None
 break # no pattern to ultimately end up on, so we're done
 # continue loop, just in case we land on a repeat or transpose that needs resolving
 self.orderlist_index -= 1 # "undo" +1 at start of loop
 continue

 # parse pattern
 if a_byte < GT_MAX_PATTERNS_PER_SONG: # if it's a pattern
 break # found one, done parsing

 raise ChiptuneSAKException("Error: found uninterpretable value %d in orderlist" % a_byte)

if __name__ == "__main__":
pass

 Source code for chiptunesak.lilypond

import copy

from chiptunesak.base import *
from chiptunesak.chirp import Note

This is not the required version: use any version >= to this
LP_VERSION = '2.18.2'

TODO:
- Refactor common code out of export_clip_to_lilypond and export_song_to_lilypond?

lp_pitches = {
 'sharps': ["c", "cis", "d", "dis", "e", "f", "fis", "g", "gis", "a", "ais", "b"],
 'flats': ["c", "des", "d", "ees", "e", "f", "ges", "g", "aes", "a", "bes", "b"],
}

lp_durations = {
 Fraction(4, 1): '1', Fraction(3, 1): '2.', Fraction(2, 1): '2', Fraction(3, 2): '4.', Fraction(1, 1): '4',
 Fraction(3, 4): '8.', Fraction(1, 2): '8', Fraction(3, 8): '16.', Fraction(1, 4): '16',
 Fraction(3, 16): '32.', Fraction(1, 8): '32', Fraction(3, 32): '64.', Fraction(1, 16): '64'
}

def lp_pitch_to_note_name(note_num, pitches, octave_offset=-3):
 """
 Gets the Lilypond note name for a given pitch.

 :param note_num: MIDI note number
 :param pitches: Set of pitches to use (sharp or flat)
 :param octave_offset: Octave offset (the default is 4, which is the lilypond standard)
 :return: Lilypond pitch name
 """
 if not 0 <= note_num <= 127:
 raise ChiptuneSAKValueError("Illegal note number %d" % note_num)
 octave_num = ((note_num - constants.C0_MIDI_NUM) // 12) + octave_offset
 if octave_num >= 0:
 octave = "'" * octave_num
 else:
 octave = "," * abs(octave_num)
 pitch = note_num % 12
 return "%s%s" % (pitches[pitch], octave)

def make_lp_notes(note_name, duration, ppq):
 """
 Makes a series of Lilypond notes/rests to fill a specified duration

 :param note_name: Lilypond note name (from lp_pitch_to_note_name) or 'r' for rest.
 :param duration: Duration of the note in ppq ticks
 :param ppq: ppq from the song in which the note exists
 :return: String representing the notes in Lilypond format
 """
 if duration <= 0:
 raise ChiptuneSAKValueError("Illegal note duration: %d" % duration)
 durs = decompose_duration(duration, ppq, lp_durations)
 if note_name == 'r':
 retval = ' '.join("%s%s" % (note_name, lp_durations[f]) for f in durs)
 else:
 retval = '~ '.join("%s%s" % (note_name, lp_durations[f]) for f in durs)
 return retval

def avg_pitch(track):
 """
 Gives the average pitch for a track

 :param track: an MChirpTrack
 :return: average pitch as MIDI note number
 """
 total = sum(n.note_num for measure in track.measures for n in measure.events if isinstance(n, Note))
 number = sum(1 for measure in track.measures for n in measure.events if isinstance(n, Note))
 if number == 0:
 raise ChiptuneSAKContentError("Track %s has no notes" % track.name)
 return total / number

[docs]class Lilypond(ChiptuneSAKIO):
 @classmethod
 def cts_type(cls):
 return 'Lilypond'

 def __init__(self):
 ChiptuneSAKIO.__init__(self)
 self.set_options(format='song')
 self.current_pitch_set = lp_pitches['sharps']
 self.current_clef = 'treble'
 self.current_ottava = 0

 @property
 def format(self):
 return self.get_option('format')[0].lower()

[docs] def to_bin(self, mchirp_song, **kwargs):
 """
 Exports MChirp to lilypond text

 :param mchirp_song: song to export
 :type mchirp_song: MChirpSong
 :return: lilypond text
 :rtype: str

 :keyword options:
 * **format** (string) - format, either 'song' or 'clip'
 * **autosort** (bool) - sort tracks from highest to lowest average pitch
 * **measures** (list) - list of contiguous measures, from one track.
 Required for 'clip' format, ignored otherwise.
 """
 self.set_options(**kwargs)
 if self.format == 'c':
 measures = list(self.get_option('measures', []))
 return self.export_clip_to_lilypond(mchirp_song, measures)
 elif self.format == 's':
 return self.export_song_to_lilypond(mchirp_song)
 else:
 raise ChiptuneSAKValueError(f"Unrecognized format {self.format}")

[docs] def to_file(self, mchirp_song, filename, **kwargs):
 """
 Exports MChirp to lilypond source file

 :param mchirp_song: song to export
 :type mchirp_song: MChirpSong
 :param filename: filename to write
 :type filename: str
 :return: lilypond text
 :rtype: str

 :keyword options: see to_bin()
 """
 self.set_options(**kwargs)
 with open(filename, 'w') as f:
 f.write(self.to_bin(mchirp_song, **kwargs))

 def clef(self, t_range):
 avg = sum(t_range) / len(t_range)
 clef = self.current_clef
 if self.current_clef == 'treble' and avg < 60:
 clef = 'bass'
 elif self.current_clef == 'bass' and avg > 60:
 clef = 'treble'
 return clef

 def ottava(self, note_num):
 ottava = self.current_ottava
 bass_transitions = (41 - 3 * self.current_ottava, 66 + 3 * self.current_ottava)
 treble_transitions = (55 + 3 * self.current_ottava, 84 - 3 * self.current_ottava)
 if self.current_clef == 'bass':
 if note_num < bass_transitions[0]:
 ottava = -1
 elif note_num > bass_transitions[1]:
 ottava = 1
 else:
 ottava = 0
 else:
 if note_num < treble_transitions[0]:
 ottava = -1
 elif note_num > treble_transitions[1]:
 ottava = 1
 else:
 ottava = 0
 return ottava

[docs] def measure_to_lilypond(self, measure):
 """
 Converts contents of a measure into Lilypond text

 :param measure: A ctsMeasure.Measure object
 :return: Lilypond text encoding the measure content.
 """
 measure_contents = []
 measure_notes = [e.note_num for e in measure.events if isinstance(e, Note)]
 if len(measure_notes) > 0:
 measure_range = (min(measure_notes), max(measure_notes))
 measure_clef = self.clef(measure_range)
 if measure_clef != self.current_clef:
 self.current_clef = measure_clef
 measure_contents.append("\\clef %s" % self.current_clef)
 for e in measure.events:
 if isinstance(e, Note):
 note_ottava = self.ottava(e.note_num)
 if note_ottava != self.current_ottava:
 self.current_ottava = note_ottava
 measure_contents.append("\\ottava #%d" % self.current_ottava)
 f = Fraction(e.duration / self.ppq).limit_denominator(64)
 if f in lp_durations:
 measure_contents.append(
 "%s%s%s" % (lp_pitch_to_note_name(e.note_num, self.current_pitch_set),
 lp_durations[f], '~' if e.tied_from else ''))
 else:
 measure_contents.append(make_lp_notes(
 lp_pitch_to_note_name(e.note_num, self.current_pitch_set),
 e.duration, self.ppq))

 elif isinstance(e, Rest):
 f = Fraction(e.duration / self.ppq).limit_denominator(64)
 if f in lp_durations:
 measure_contents.append("r%s" % (lp_durations[f]))
 else:
 measure_contents.append(make_lp_notes('r', e.duration, self.ppq))

 elif isinstance(e, Triplet):
 measure_contents.append('\\tuplet 3/2 {')
 for te in e.content:
 if isinstance(te, Note):
 te_duration = te.duration * Fraction(3 / 2)
 f = Fraction(te_duration / self.ppq).limit_denominator(64)
 if f in lp_durations:
 measure_contents.append(
 "%s%s%s" % (lp_pitch_to_note_name(te.note_num, self.current_pitch_set),
 lp_durations[f], '~' if te.tied_from else ''))
 else:
 measure_contents.append(make_lp_notes(
 lp_pitch_to_note_name(te.note_num, self.current_pitch_set),
 te_duration, self.ppq))

 elif isinstance(te, Rest):
 measure_contents.append(make_lp_notes('r', te.duration * Fraction(3 / 2), self.ppq))

 measure_contents.append('}')

 elif isinstance(e, MeasureMarker):
 measure_contents.append('|')

 elif isinstance(e, TimeSignatureEvent):
 if e.num != self.current_time_signature.num or e.denom != self.current_time_signature.denom:
 measure_contents.append('\\time %d/%d' % (e.num, e.denom))
 self.current_time_signature = copy.copy(e)

 elif isinstance(e, KeySignatureEvent):
 if e.key.key_signature != self.current_key_signature:
 key_name = e.key.key_name
 self.current_pitch_set = lp_pitches[e.key.accidentals()]
 key_name = key_name.replace('#', 'is')
 key_name = key_name.replace('b', 'es')
 if e.key.key_signature.type == 'minor':
 measure_contents.append('\\key %s \\minor' % (key_name.lower()[:-1]))
 else:
 measure_contents.append('\\key %s \\major' % (key_name.lower()))
 self.current_key_signature = copy.copy(e.key.key_signature)

 return measure_contents

[docs] def export_clip_to_lilypond(self, mchirp_song, measures):
 """
 Turns a set of measures into Lilypond suitable for use as a clip. All the music will be on a single line
 with no margins. It is recommended that this clip be turned into Lilypond using the command line:

 ``lilypond -ddelete-intermediate-files -dbackend=eps -dresolution=600 -dpixmap-format=pngalpha --png <filename>``

 :param mchirp_song: ChirpSong from which the measures were taken.
 :type mchirp_song: MChirpSong
 :param measures: List of measures.
 :type measures: list
 :return: Lilypond markup ascii
 :rtype: str
 """
 if len(measures) < 1:
 raise ChiptuneSAKContentError("No measures to export!")
 # Set these to the default so that they will change on the first measure.
 self.current_time_signature = TimeSignatureEvent(0, 4, 4)
 self.current_key_signature = key.ChirpKey('C').key_signature
 self.current_clef = 'treble'
 self.current_ottava = 0
 self.ppq = mchirp_song.metadata.ppq
 output = []
 ks = mchirp_song.get_key_signature(measures[0].start_time)
 if ks.start_time < measures[0].start_time:
 measures[0].events.insert(0, KeySignatureEvent(measures[0].start_time, ks.key))

 ts = mchirp_song.get_time_signature(measures[0].start_time)
 if ts.start_time < measures[0].start_time:
 measures[0].events.insert(0, TimeSignatureEvent(measures[0].start_time, ts.num, ts.denom))

 output.append('\\version "%s"' % LP_VERSION)
 output.append('''
 \\paper {
 indent=0\\mm line-width=120\\mm oddHeaderMarkup = ##f
 evenHeaderMarkup = ##f oddFooterMarkup = ##f evenFooterMarkup = ##f
 page-breaking = #ly:one-line-breaking }
 ''')
 note_range = (min(e.note_num for m in measures for e in m.events if isinstance(e, Note)),
 max(e.note_num for m in measures for e in m.events if isinstance(e, Note)))
 self.current_clef = self.clef(note_range)
 self.current_ottava = 0
 output.append('\\new Staff {')
 output.append('\\clef %s' % self.current_clef)
 for im, m in enumerate(measures):
 measure_contents = self.measure_to_lilypond(m)
 output.append(' '.join(measure_contents))
 output.append('}')
 return '\n'.join(output)

[docs] def export_song_to_lilypond(self, mchirp_song):
 """
 Converts a song to Lilypond format. Optimized for multi-page PDF output of the song.
 Recommended lilypond command:

 ``lilypond <filename>``

 :param mchirp_song: ChirpSong to convert to Lilypond format
 :type mchirp_song: MChirpSong
 :return: Lilypond markup ascii
 :rtype: str
 """

 # Set these to the default, so that they will change on the first measure.
 self.current_time_signature = TimeSignatureEvent(0, 4, 4)
 self.current_key_signature = key.ChirpKey('C').key_signature
 self.current_clef = 'treble'
 self.current_ottava = 0
 self.ppq = mchirp_song.metadata.ppq
 output = []
 output.append('\\version "%s"' % LP_VERSION)
 output.append('\\header {')
 if len(mchirp_song.metadata.name) > 0:
 output.append(' title = "%s"' % mchirp_song.metadata.name)
 output.append('composer = "%s"' % mchirp_song.metadata.composer)
 output.append('}')
 # ---- end of headers ----
 tracks = [t for t in mchirp_song.tracks]
 if self.get_option('autosort', False):
 tracks = sorted([t for t in mchirp_song.tracks], key=avg_pitch, reverse=True)
 output.append('\\new StaffGroup <<')
 for it, t in enumerate(tracks):
 self.current_time_signature = TimeSignatureEvent(0, 4, 4)
 self.current_key_signature = key.ChirpKey('C').key_signature
 measures = copy.copy(t.measures)
 track_range = (min(e.note_num for m in t.measures for e in m.events if isinstance(e, Note)),
 max(e.note_num for m in t.measures for e in m.events if isinstance(e, Note)))
 self.current_clef = self.clef(track_range)
 self.current_ottava = 0
 output.append('\\new Staff \\with { instrumentName = #"%s" } {' % t.name)
 output.append('\\clef %s' % self.current_clef)
 for im, m in enumerate(measures):
 output.append("%% measure %d" % (im + 1))
 measure_contents = self.measure_to_lilypond(m)
 output.append(' '.join(measure_contents))
 output.append('\\bar "||"')
 output.append('}')
 output.append('>>\n')
 return '\n'.join(output)

 Source code for chiptunesak.mchirp

import copy
from chiptunesak.base import *
from chiptunesak import chirp
import more_itertools as moreit

""" Definition and methods for mchirp.MChirpSong representation """

[docs]class Measure:
 @staticmethod
 def _sort_order(c):
 """
 Sort function for measure contents.
 Items are sorted by time and then, for equal times, in this order:
 Time Signature
 Key Signature
 Tempo
 Other MIDI message(s)
 Notes and rests
 """
 if isinstance(c, chirp.Note):
 return (c.start_time, 10)
 elif isinstance(c, Triplet):
 return (c.start_time, 10)
 elif isinstance(c, Rest):
 return (c.start_time, 10)
 elif isinstance(c, MeasureMarker):
 return (c.start_time, 0)
 elif isinstance(c, TimeSignatureEvent):
 return (c.start_time, 1)
 elif isinstance(c, KeySignatureEvent):
 return (c.start_time, 2)
 elif isinstance(c, TempoEvent):
 return (c.start_time, 3)
 elif isinstance(c, ProgramEvent):
 return (c.start_time, 4)
 else:
 return (c.start_time, 5)

 def __init__(self, start_time, duration):
 """
 Creation for Measure object. Populating the measure with events is a separate method populate()

 :param start_time: Start time of the measure, in MIDI ticks
 :param duration: Duration of the measure, in MIDI ticks
 """
 self.start_time = start_time
 self.duration = duration
 self.events = []

[docs] def process_triplets(self, measure_notes, ppq):
 """
 Processes and accounts for all triplets in the measure

 :param measure_notes: list of notes in the measure
 :type measure_notes: list of notes/triplets
 :param ppq: pulses per quarter from song
 :type ppq: int
 :return: new measure contents
 :rtype: list of notes/triplet
 """
 triplets = [n for n in measure_notes if is_triplet(n, ppq)]
 while len(triplets) > 0:
 shortest_triplet = sorted(triplets, key=lambda t: (t.duration, t.start_time))[0]
 t_start = shortest_triplet.start_time - self.start_time
 beat_type = start_beat_type(t_start, ppq)
 if beat_type % 3 == 0: # This happens when the triplet does NOT start on a beat
 beat_division = beat_type // 3 # Get the beat size from the offset from the triplet start
 # The triplet start time is the previous beat of the required size
 triplet_start_time = (shortest_triplet.start_time * beat_division // ppq) * ppq // beat_division
 # Deduce the triplet length from the position of the note; it is on sub-beat 2 or 3
 min_duration = min(shortest_triplet.duration, shortest_triplet.start_time - triplet_start_time)
 triplet_duration = 3 * min_duration
 while triplet_start_time + triplet_duration <= shortest_triplet.start_time:
 triplet_start_time += triplet_duration
 else: # Note is on the beat so triplet starts on the beat
 triplet_start_time = shortest_triplet.start_time
 # Assume the note is a triplet (remember it is the shortest) unless proven otherwise
 triplet_duration = 3 * shortest_triplet.duration
 # Triplet cannot cross measure boundaries
 if triplet_start_time + triplet_duration > self.start_time + self.duration:
 triplet_duration //= 2
 # All notes inside the triplet have to be triplets themselves
 if any(not is_triplet(n, ppq) for n in measure_notes if
 triplet_start_time <= n.start_time < triplet_start_time + triplet_duration):
 triplet_duration //= 2
 # Make a new triplet with the right start time and duration
 new_triplet = Triplet(triplet_start_time, triplet_duration)
 # Now take notes and fill in the triplet
 measure_notes = self.populate_triplet(new_triplet, measure_notes)
 # Check for any remaining triplets in the measure. Interstingly, the triplet object is not a triplet-note!
 triplets = [n for n in measure_notes if is_triplet(n, ppq)]
 # Sort the measure notes before returning
 return sorted(measure_notes, key=lambda n: n.start_time)

[docs] def populate_triplet(self, triplet, measure_notes):
 """
 Given a triplet, populate it from the ntoes in the measure, splitting them if required

 :param triplet: triplet to be populated
 :type triplet: Triplet
 :param measure_notes: notes in the measure
 :type measure_notes: list of notes
 :return: measure notes now including triplet
 :rtype: list of notes/triplets
 """
 triplet_end = triplet.start_time + triplet.duration
 # We will make a new list of notes to return
 new_measure_notes = []
 for n in measure_notes:
 note_end = n.start_time + n.duration
 # Notes that start before the triplet and end after the triplet has started
 if n.start_time < triplet.start_time and note_end > triplet.start_time:
 assert note_end <= triplet_end, "Error in triplet processing!"
 new_notes = n.split(triplet.start_time)
 new_measure_notes.append(new_notes[0])
 triplet.content.append(new_notes[-1])
 # Notes that start inside the triplet
 elif triplet.start_time <= n.start_time < triplet_end:
 if note_end > triplet_end:
 new_notes = n.split(triplet_end)
 triplet.content.append(new_notes[0])
 new_measure_notes.append(new_notes[-1])
 else:
 triplet.content.append(n)
 # Notes not involved in the triplet
 else:
 new_measure_notes.append(n)

 # Add rests inside the triplet
 triplet.content.sort(key=lambda n: n.start_time)
 triplet_rests = []
 current_position = triplet.start_time
 for n in triplet.content:
 if n.start_time > current_position:
 triplet_rests.append(Rest(current_position, n.start_time - current_position))
 current_position = n.start_time + n.duration
 if current_position < triplet_end:
 triplet_rests.append(Rest(current_position, triplet_end - current_position))
 triplet.content.extend(triplet_rests)
 triplet.content.sort(key=lambda n: n.start_time)
 assert sum(c.duration for c in triplet.content) == triplet.duration, "Triplet content does not sum to length!"
 # Add the triplet to the measure events
 new_measure_notes.append(triplet)
 return sorted(new_measure_notes, key=lambda n: n.start_time)

[docs] def add_rests(self, measure_notes):
 """
 Add rests to a measure content

 :param measure_notes: notes in the measure
 :type measure_notes: list of notes
 :return: new list of events including rests
 :rtype: list of events in measure
 """
 rests = []
 measure_notes.sort(key=lambda n: n.start_time)
 current_time = self.start_time
 for n in measure_notes:
 if n.start_time > current_time:
 rests.append(Rest(current_time, n.start_time - current_time))
 current_time = n.start_time + n.duration
 if current_time < self.start_time + self.duration:
 rests.append(Rest(current_time, self.start_time + self.duration - current_time))
 measure_notes.extend(rests)
 return sorted(measure_notes, key=lambda n: n.start_time)

[docs] def populate(self, track, carry=None):
 """
 Populates a single measure with notes, rests, and other events.

 :param track: Track from which events are to be imported
 :param carry: If last note in previous measure is continued in this measure, the note with
 remaining time
 :return: Carry note, if last note is to be carried into the next measure.
 """
 ppq = track.chirp_song.metadata.ppq
 end = self.start_time + self.duration

 # Measure number is obtained from the song.
 measure_number = track.chirp_song.get_measure_beat(self.start_time).measure
 self.events.append(MeasureMarker(self.start_time, measure_number))

 # Find all the notes that start in this measure; not the fastest but it works
 measure_notes = [copy.copy(n) for n in track.notes if self.start_time <= n.start_time < end]

 # Add in carry from previous measure
 if carry is not None:
 measure_notes.insert(0, copy.copy(carry))
 carry = None

 # Process any notes carried out of the measure
 for n in measure_notes[::-1][:1]:
 note_end = n.start_time + n.duration
 if note_end > end:
 n, carry = tuple(n.split(end))
 break # only one note can possible go past the end

 measure_notes = self.process_triplets(measure_notes, ppq)
 measure_notes = self.add_rests(measure_notes)
 self.events.extend(copy.deepcopy(measure_notes))

 # Add program changes to measure:
 for pc in track.program_changes:
 if self.start_time <= pc.start_time < end:
 # Leave the time of these messages alone
 self.events.append(pc)

 # Add any additional track-specific messages to the measure:
 for m in track.other:
 if self.start_time <= m.start_time < end:
 # Leave the time of these messages alone
 self.events.append(m)

 # Now add all the song-specific events to the measure.
 for ks in track.chirp_song.key_signature_changes:
 if self.start_time <= ks.start_time < end:
 # Key signature changes must occur at the start of the measure
 self.events.append(KeySignatureEvent(self.start_time, ks.key))

 for ts in track.chirp_song.time_signature_changes:
 if self.start_time <= ts.start_time < end:
 # Time signature changes must occur at the start of the measure
 self.events.append(TimeSignatureEvent(self.start_time, ts.num, ts.denom))

 for tm in track.chirp_song.tempo_changes:
 if self.start_time <= tm.start_time < end:
 # Tempo changes can happen anywhere in the measure
 self.events.append(TempoEvent(tm.start_time, tm.qpm))

 self.events = sorted(self.events, key=self._sort_order)

 return carry

 def count_notes(self):
 return sum(1 for e in self.events if isinstance(e, chirp.Note))

 def get_notes(self):
 return [e for e in self.events if isinstance(e, chirp.Note)]

 def get_rests(self):
 return [e for e in self.events if isinstance(e, Rest)]

[docs]class MChirpTrack:
 def __init__(self, mchirp_song, chirp_track=None):
 self.measures = [] #: List of measures in the track
 self.name = '' #: Track name
 self.channel = 0 #: Midi channel number
 self.mchirp_song = mchirp_song #: parent MChirpSong
 self.qticks_notes = mchirp_song.qticks_notes #: Inherit quantization from song
 self.qticks_durations = mchirp_song.qticks_durations #: Inherit quantization from song
 if chirp_track is not None:
 if not isinstance(chirp_track, chirp.ChirpTrack):
 raise ChiptuneSAKTypeError("MChirpTrack init can only import ChirpTrack objects.")
 else:
 self.import_chirp_track(chirp_track)

[docs] def import_chirp_track(self, chirp_track):
 """
 Converts a track into measures, each of which is a sorted list of notes and other events

 :param chirp_track: A ctsSongTrack that has been quantized and had polyphony removed
 :type chirp_track: ChirpTrack
 :return: List of Measure objects corresponding to the measures
 """
 if not chirp_track.is_quantized():
 raise ChiptuneSAKQuantizationError("Track must be quantized to populate measures.")
 if chirp_track.is_polyphonic():
 raise ChiptuneSAKPolyphonyError("Track must be non-polyphonic to populate measures.")
 self.qticks_notes = chirp_track.qticks_notes
 self.qticks_durations = chirp_track.qticks_durations
 measures_list = []
 measure_starts = chirp_track.chirp_song.measure_starts()
 # Artificially add an extra measure on the end to finish processing the notes in the last measure.
 measure_starts.append(2 * measure_starts[-1] - measure_starts[-2])
 # First add in the notes to the measure
 carry = None
 for start, end in moreit.pairwise(measure_starts):
 current_measure = Measure(start, end - start)
 carry = current_measure.populate(chirp_track, carry)
 measures_list.append(current_measure)
 self.measures = measures_list
 self.name = chirp_track.name
 self.channel = chirp_track.channel

[docs]class MChirpSong(ChiptuneSAKBase):
 @classmethod
 def cts_type(cls):
 return 'MChirp'

 def __init__(self, chirp_song=None):
 ChiptuneSAKBase.__init__(self)
 self.tracks = []
 self.metadata = SongMetadata() #: Metadata
 self.qticks_notes = self.metadata.ppq #: Quantization for note starts, in ticks
 self.qticks_durations = self.metadata.ppq #: Quantization for note durations, in ticks
 self.other = [] #: Other MIDI events not used in measures
 if chirp_song is not None:
 if chirp_song.cts_type() != 'Chirp':
 raise ChiptuneSAKTypeError("MChirpSong init can only import ChirpSong objects")
 else:
 self.import_chirp_song(chirp_song)

 def to_chirp(self, **kwargs):
 self.set_options(**kwargs)
 return chirp.ChirpSong(self)

[docs] def import_chirp_song(self, chirp_song):
 """
 Gets all the measures from all the tracks in a song, and removes any empty (note-free) measures from the end.

 :param chirp_song: A chirp.ChirpSong song
 :type chirp_song: ChirpSong
 """
 if not chirp_song.is_quantized():
 raise ChiptuneSAKQuantizationError("ChirpSong must be quantized before populating measures.")
 if chirp_song.is_polyphonic():
 raise ChiptuneSAKPolyphonyError("ChirpSong must not be polyphonic to populate measures.")
 for t in chirp_song.tracks:
 self.tracks.append(MChirpTrack(self, t))
 self.metadata = copy.deepcopy(chirp_song.metadata)
 self.qticks_notes, self.qticks_durations = chirp_song.qticks_notes, chirp_song.qticks_durations
 self.other = copy.deepcopy(chirp_song.other)
 self.trim()
 if chirp_song.get_option('trim_partial', False):
 self.trim_partial_measures()

[docs] def trim(self):
 """
 Trims all note-free measures from the end of the song.
 """
 if len(self.tracks) == 0:
 raise ChiptuneSAKContentError("No tracks in song")
 while all(t.measures[-1].count_notes() == 0 for t in self.tracks):
 for t in self.tracks:
 t.measures.pop()
 if len(t.measures) == 0:
 raise ChiptuneSAKContentError("No measures left in track %s" % t.name)

[docs] def trim_partial_measures(self):
 """
 Trims any partial measures from the end of the file
 """
 if all(isinstance(t.measures[-1].events[-1], Rest) for t in self.tracks):
 for t in self.tracks:
 t.measures.pop()
 if len(t.measures) == 0:
 raise ChiptuneSAKContentError("No measures left in track %s" % t.name)

[docs] def get_time_signature(self, time_in_ticks):
 """
 Finds the active key signature at a given time in the song

 :param time_in_ticks:
 :return: The last time signature change event before the given time.
 """
 current_time_signature = TimeSignatureEvent(0, 4, 4)
 for m in self.tracks[0].measures:
 if m.start_time > time_in_ticks:
 break
 else:
 ts = [e for e in m.events if isinstance(e, TimeSignatureEvent)]
 current_time_signature = ts[-1] if len(ts) > 0 else current_time_signature
 return current_time_signature

[docs] def get_key_signature(self, time_in_ticks):
 """
 Finds the active key signature at a given time in the song

 :param time_in_ticks:
 :return: The last key signature change event before the given time.
 """
 current_key_signature = KeySignatureEvent(0, 'C')
 for m in self.tracks[0].measures:
 if m.start_time > time_in_ticks:
 break
 else:
 ks = [e for e in m.events if isinstance(e, KeySignatureEvent)]
 current_key_signature = ks[-1] if len(ks) > 0 else current_key_signature
 return current_key_signature

 Source code for chiptunesak.midi

import sys
import mido
from chiptunesak.base import *
from chiptunesak.chirp import Note, ChirpTrack, ChirpSong

def sort_midi_events(msg):
 if msg.type == 'note_off':
 return (msg.time, 9)
 elif msg.type == 'note_on':
 return (msg.time, 10)
 elif msg.type == 'program_change':
 return (msg.time, 5)
 elif msg.type == 'track_name':
 return (msg.time, 0)
 else:
 return (msg.time, 7)

[docs]class MIDI(ChiptuneSAKIO):
 """
 Import/Export MIDI files to and from Chirp songs.

 The Chirp format is most closely tied to the MIDI standard. As a result, conversion between MIDI
 files and ChirpSong objects is one of the most common ways to import and export music using the
 ChiptuneSAK framework.

 The MIDI class does not implement the standard to_bin() method because it uses the `mido`_ library to
 process low-level midi messages, and mido only deals with MIDI files.

 The Chirp framework can import both MIDI type 0 and type 1 files. It will only write MIDI type 1 files.

 .. _mido: https://mido.readthedocs.io/en/latest/
 """
 @classmethod
 def cts_type(cls):
 return "MIDI"

 def __init__(self):
 ChiptuneSAKIO.__init__(self)
 self.midi_song = mido.MidiFile()

[docs] def to_chirp(self, filename, **kwargs):
 """
 Import a midi file to Chirp format

 :param filename: filename to import
 :type filename: str
 :return: chirp song
 :rtype: ChirpSong
 :keyword options:
 * **keyswitch** (bool) Remove keyswitch notes with midi number <=8 (default True)
 * **polyphony** (bool) Allow polyphony (removal occurs after any quantization) (default True)
 * **quantize** (str)

 - 'auto': automatically determines required quantization
 - '8', '16', '32', etc. : quantize to the named duration
 """
 self.set_options(**kwargs)
 return self.import_midi_to_chirp(filename)

[docs] def to_file(self, song, filename, **kwargs):
 """
 Exports a ChirpSong to a midi file.

 :param song: chirp song
 :type song: chirpSong
 :param filename: filename for export
 :type filename: str
 :return: True on success
 :rtype: bool
 """
 self.set_options(**kwargs)
 return self.export_chirp_to_midi(song, filename)

[docs] def midi_track_to_chirp_track(self, chirp_song, midi_track):
 """
 Parse a MIDI track into notes, track name, and program changes. This method uses the `mido`
 library for MIDI messges within the track.

 :param midi_track: midi track
 :type midi_track: MIDO midi track
 """
 chirp_track = ChirpTrack(chirp_song)
 # Find the first note_on event and use its channel to set the channel for this track.
 ch_msg = next((msg for msg in midi_track if msg.type == 'note_on'), None)
 if ch_msg:
 chirp_track.channel = ch_msg.channel
 chirp_track.name = 'Channel %d' % chirp_track.channel
 # Find the name meta message to get the track's name. Default is the channel.
 name_msg = next((msg for msg in midi_track if msg.type == 'track_name'), None)
 if name_msg:
 if len(name_msg.name.strip()) > 0:
 chirp_track.name = name_msg.name.strip()
 # Convert Midi events in the track into notes and durations
 current_time = 0
 current_notes_on = {}
 chirp_track.notes = [] # list of notes
 chirp_track.other = [] # list of other things int the track, such as patch changes or pitchwheel
 channels = set()
 for msg in midi_track:
 current_time += msg.time
 if not msg.is_meta:
 # Keep track of unique channels for non-meta messages
 channels.add(msg.channel)
 # Some MIDI devices use a note_on with velocity of 0 to turn notes off.
 if msg.type == 'note_off' or (msg.type == 'note_on' and msg.velocity == 0):
 # If this note is not in our dictionary of notes that are on, ignore the note_off
 if msg.note in current_notes_on:
 current_note = current_notes_on[msg.note]
 start = current_note.start_time
 delta = current_time - start
 if delta > 0:
 current_note.duration = delta
 chirp_track.notes.append(current_note)
 elif delta < 0:
 raise ChiptuneSAKValueError("Error in MIDI import: Illegal note length %d" % delta)
 # Remove the note from the dictionary of notes that are on.
 del current_notes_on[msg.note]
 elif msg.type == 'note_on':
 # Keep a dictionary of all notes that are currently on
 if msg.note not in current_notes_on:
 current_notes_on[msg.note] = Note(current_time, msg.note, 0, msg.velocity)
 # Program changes get their own list
 elif msg.type == 'program_change':
 chirp_track.program_changes.append(ProgramEvent(current_time, int(msg.program)))
 elif msg.is_meta and msg.type == 'track_name':
 chirp_track.name = msg.name.strip()
 # Other messages of interest in the track are stored in a separate list as native MIDI messages
 elif msg.is_meta or (msg.type in ChirpTrack.other_message_types):
 chirp_track.other.append(OtherMidiEvent(current_time, msg))
 # Turn off any notes left on
 for n in current_notes_on:
 start = current_notes_on[n].start_time
 delta = current_time - start
 if delta > 0:
 current_notes_on[n].duration = delta
 chirp_track.notes.append(current_notes_on[n])

 # Check that there was only one channel used in the track
 if len(channels) > 1:
 raise ChiptuneSAKException('Non-unique channel for track: %d channels in track %s'
 % (len(channels), chirp_track.name))

 # Now sort the notes by the time they turn on. They were inserted into the list in
 # the order they were turned off. To do the sort, take advatage of automatic sorting of tuples.
 chirp_track.notes.sort(key=lambda n: (n.start_time, -n.note_num))
 chirp_track.program_changes.sort(key=lambda n: n.start_time)
 return chirp_track

[docs] def import_midi_to_chirp(self, input_filename):
 """
 Open and import a MIDI file into the ChirpSong representation. THis method can handle MIDI type 0 and 1 files.

 :param input_filename: MIDI filename.
 """
 chirp_song = ChirpSong()
 # Clear everything
 chirp_song.reset_all()

 # Open the midi file using the Python mido library
 in_midi = mido.MidiFile(input_filename)
 chirp_song.metadata.ppq = in_midi.ticks_per_beat # Pulses Per Quarter Note (usually 480, but Sibelius uses 960)
 # If MIDI file is not a Type 0 or 1 file, barf
 if int(in_midi.type) > 1:
 print("Error: Midi type %d detected. Only midi type 0 and 1 files supported." % (in_midi.type),
 file=sys.stderr)
 sys.exit(1)

 # Parse and process the MIDI file into tracks
 # if this is a MIDI type 0 file, then there will only be one track with all the data in it.
 if in_midi.type == 0:
 # Splits into tracks: track 0 (metadata), and tracks 1-16 are note data.
 in_midi = self.split_midi_zero_into_tracks(in_midi)

 # Process meta commands in ALL tracks
 chirp_song.time_signature_changes = []
 chirp_song.key_signature_changes = []
 midi_meta_tracks = []
 for i, track in enumerate(in_midi.tracks):
 if i == 0:
 midi_meta_tracks.append(track)
 chirp_song = self.get_meta(chirp_song, track, True if i == 0 else False, True)
 else:
 chirp_song = self.get_meta(chirp_song, track, False, False)

 # Sort all time changes from meta tracks into a single time signature change list
 chirp_song.time_signature_changes = sorted(chirp_song.time_signature_changes)
 chirp_song.key_signature_changes = sorted(chirp_song.key_signature_changes)
 chirp_song.tempo_changes = sorted(chirp_song.tempo_changes)

 # Find all tracks that contain notes
 midi_note_tracks = [t for t in in_midi.tracks if sum(1 for m in t if m.type == 'note_on') > 0]

 # Now generate the note tracks
 for track in midi_note_tracks:
 chirp_track = self.midi_track_to_chirp_track(chirp_song, track)
 chirp_song.tracks.append(chirp_track)

 if self.get_option('keyswitch', True):
 chirp_song.remove_keyswitches(ks_max=8)
 q_type = self.get_option('quantization', None)
 if q_type is not None:
 if q_type == 'auto':
 chirp_song.quantize(*chirp_song.estimate_quantization())
 elif isinstance(q_type, int) or all(c.isdigit() for c in q_type):
 chirp_song.quantize_from_note_name(str(q_type))
 if not self.get_option('polyphony', 'True'):
 chirp_song.remove_polyphony()

 return chirp_song

[docs] def get_meta(self, chirp_song, meta_track, is_zerotrack=False, is_metatrack=False):
 """
 Process MIDI meta messages in a track.

 :param chirp_song:
 :param meta_track:
 :param is_zerotrack:
 :param is_metatrack:
 """
 is_composer_set = False
 is_name_set = False
 current_time = 0
 for msg in meta_track:
 current_time += msg.time
 if msg.type == 'time_signature':
 chirp_song.time_signature_changes.append(
 TimeSignatureEvent(current_time, msg.numerator, msg.denominator))
 elif msg.type == 'set_tempo':
 chirp_song.tempo_changes.append(TempoEvent(current_time, int(round(mido.tempo2bpm(msg.tempo)))))
 elif msg.type == 'key_signature':
 chirp_song.key_signature_changes.append(KeySignatureEvent(current_time, key.ChirpKey(msg.key)))
 elif msg.type == 'track_name' and is_zerotrack and not is_name_set:
 chirp_song.metadata.name = msg.name.strip()
 is_name_set = True
 # Composer seems to be the first text message in track zero. Not required but maybe a semi-standard
 elif msg.type == 'text' and is_zerotrack and not is_composer_set:
 chirp_song.metadata.composer = msg.text.strip()
 is_composer_set = True
 elif msg.type == 'copyright' and is_zerotrack:
 chirp_song.metadata.copyright = msg.text.strip()
 # Keep meta events from tracks without notes
 # Note that these events are stored as midi messages with the global time attached.
 elif msg.is_meta and is_metatrack:
 chirp_song.other.append(OtherMidiEvent(current_time, msg))

 # Require initial time signature, key signature, and tempo values.
 if len(chirp_song.key_signature_changes) == 0 or chirp_song.key_signature_changes[0].start_time != 0:
 chirp_song.key_signature_changes.insert(0, KeySignatureEvent(0, key.ChirpKey("C"))) # Default top key of C
 chirp_song.metadata.key_signature = chirp_song.key_signature_changes[0]
 if len(chirp_song.time_signature_changes) == 0 or chirp_song.time_signature_changes[0].start_time != 0:
 chirp_song.time_signature_changes.insert(0, TimeSignatureEvent(0, 4, 4)) # Default to 4/4
 chirp_song.metadata.time_signature = chirp_song.time_signature_changes[0]
 if len(chirp_song.tempo_changes) == 0 or chirp_song.tempo_changes[0].start_time != 0:
 chirp_song.tempo_changes.insert(0, TempoEvent(0, int(mido.tempo2bpm(500000))))
 chirp_song.metadata.qpm = chirp_song.tempo_changes[0].qpm
 chirp_song.set_metadata()
 return chirp_song

[docs] def split_midi_zero_into_tracks(self, midi_song):
 """
 For MIDI Type 0 files, split the notes into tracks. To accomplish this, we
 move the metadata into Track 0 and then assign tracks 1-16 to the note data.
 """
 last_times = [0 for i in range(17)]
 tracks = [mido.MidiTrack() for i in range(17)]
 current_time = 0
 for msg in midi_song.tracks[0]:
 current_time += msg.time
 # Move all the meta messages into a single track. Midi type 0 files should not
 # contain any track-specific meta-messages, so this is safe.
 if msg.is_meta:
 msg.time = current_time - last_times[0]
 last_times[0] = current_time
 tracks[0].append(msg)
 # All other messages get assigned to tracks based on their channel.
 elif msg.type != 'sysex':
 ch = msg.channel + 1
 msg.time = current_time - last_times[ch]
 last_times[ch] = current_time
 tracks[ch].append(msg)
 midi_song.type = 1 # Change the midi type for the mido object to Type 1
 # Eliminate tracks that have no events in them.
 midi_song.tracks = [t for t in tracks if len(t) > 0]

 return midi_song

[docs] def chirp_track_to_midi_track(self, chirp_track):
 """
 Convert ChirpTrack to a midi track.
 """
 midiTrack = mido.MidiTrack()
 events = [mido.MetaMessage('track_name', name=chirp_track.name, time=0)]
 for n in chirp_track.notes:
 # For the sake of sorting, create the midi event with the absolute time (which will be
 # changed to a delta time before returning).
 if n.note_num < 0 or n.note_num > 127:
 print(n.note_num)
 events.append(mido.Message('note_on',
 note=n.note_num, channel=chirp_track.channel,
 velocity=n.velocity, time=n.start_time))
 events.append(mido.Message('note_off',
 note=n.note_num, channel=chirp_track.channel,
 velocity=0, time=n.start_time + n.duration))
 for t, program in chirp_track.program_changes:
 events.append(mido.Message('program_change',
 channel=chirp_track.channel, program=program, time=t))
 for t, msg in chirp_track.other:
 msg.time = t
 events.append(msg)
 # Because 'note_off' comes before 'note_on' this sort will keep note_off events before
 # note_on events.
 events.sort(key=sort_midi_events)
 last_time = 0
 # Turn the absolute times into delta times.
 for msg in events:
 current_time = msg.time
 msg.time -= last_time
 midiTrack.append(msg)
 last_time = current_time
 return midiTrack

[docs] def meta_to_midi_track(self, chirp_song):
 """
 Exports metadata to a MIDI track.
 """
 midi_track = mido.MidiTrack()
 events = [mido.MetaMessage('track_name', name=chirp_song.metadata.name, time=0)]
 if len(chirp_song.metadata.composer) > 0:
 events.append(mido.MetaMessage('text', text=chirp_song.metadata.composer, time=0))
 if len(chirp_song.metadata.copyright) > 0:
 events.append(mido.MetaMessage('copyright', text=chirp_song.metadata.copyright, time=0))
 # Put all the time signature changes into the track.
 for t, key in chirp_song.key_signature_changes:
 events.append(mido.MetaMessage('key_signature', key=key.key_name, time=t))
 # Put all the time signature changes into the track.
 for t, numerator, denominator in chirp_song.time_signature_changes:
 events.append(mido.MetaMessage('time_signature', numerator=numerator, denominator=denominator, time=t))
 # Put the tempo changes into the track.
 for t, tempo in chirp_song.tempo_changes:
 events.append(mido.MetaMessage('set_tempo', tempo=mido.bpm2tempo(tempo), time=t))
 # Put any other meta-messages that were assign to the song as a whole into the track.
 for t, msg in chirp_song.other:
 msg.time = t
 events.append(msg)
 # Sort the track by time so it's ready for the MIDI delta-time format.
 events.sort(key=sort_midi_events)

 # Generate the midi from the events.
 last_time = 0
 for msg in events:
 tmp_time = msg.time
 msg.time -= last_time
 midi_track.append(msg)
 last_time = tmp_time

 return midi_track

[docs] def export_chirp_to_midi(self, chirp_song, output_filename):
 """
 Exports the song to a MIDI Type 1 file. Exporting to the midi format is privileged because this class
 is tied to many midi concepts and uses midid messages explicitly for some content.
 """
 if chirp_song.cts_type() != 'Chirp':
 raise ChiptuneSAKNotImplemented("Only ChirpSong objects can be exported to midi")
 out_midi_file = mido.MidiFile(ticks_per_beat=chirp_song.metadata.ppq)
 out_midi_file.tracks.append(self.meta_to_midi_track(chirp_song))
 for t in chirp_song.tracks:
 out_midi_file.tracks.append(self.chirp_track_to_midi_track(t))
 out_midi_file.save(output_filename)
 return True

 Source code for chiptunesak.ml64

from chiptunesak.base import *
from chiptunesak import chirp, mchirp
from chiptunesak import constants

'''
This file contains functions required to export MidiSimple songs to ML64 format.

This is the format created by Stirring Dragon Games for music content contributed
by those who backed the Unknown Realm kickstarter at the bard tier.
A few years ago, Knapp and Youd wrote a midi->ml64 tool in Python 2 for the Unknown
Realm developers. ChiptuneSAK (in Python 3) replaces that tool.
Note: We haven't seen the game or any source code for it. We know they're cranking
away at it, but have no details as to when the game will be released. Please
direct all questions regarding Unknown Realm to Stirring Dragon Games
(https://stirringdragon.games)
'''

ml64_durations = {
 Fraction(6, 1): '1d', Fraction(4, 1): '1', Fraction(3, 1): '2d', Fraction(2, 1): '2',
 Fraction(3, 2): '4d', Fraction(1, 1): '4', Fraction(3, 4): '8d', Fraction(1, 2): '8',
 Fraction(1, 4): '16'
}

def pitch_to_ml64_note_name(note_num, octave_offset=0):
 """
 Gets note name for a given MIDI pitch
 """
 if not 0 <= note_num <= 127:
 raise ChiptuneSAKValueError("Illegal note number %d" % note_num)
 octave_num = ((note_num - constants.C0_MIDI_NUM) // 12) + octave_offset
 pitch = note_num % 12
 return "%s%d" % (constants.PITCHES[pitch], octave_num)

def make_ml64_notes(note_name, duration, ppq):
 durs = decompose_duration(duration, ppq, ml64_durations)
 if note_name == 'r' or note_name == 'c':
 retval = ''.join("%s(%s)" % (note_name, ml64_durations[f]) for f in durs)
 else:
 retval = "%s(%s)" % (note_name, ml64_durations[durs[0]])
 if len(durs) > 1:
 retval += ''.join("c(%s)" % (ml64_durations[f]) for f in durs[1:])
 return retval

def ml64_sort_order(c):
 """
 Sort function for measure contents.
 Items are sorted by time and then, for equal times, in this order:
 * Patch Change
 * Tempo
 * Notes and rests
 """
 if isinstance(c, chirp.Note):
 return (c.start_time, 10)
 elif isinstance(c, Rest):
 return (c.start_time, 10)
 elif isinstance(c, MeasureMarker):
 return (c.start_time, 1)
 elif isinstance(c, TempoEvent):
 return (c.start_time, 3)
 elif isinstance(c, ProgramEvent):
 return (c.start_time, 2)
 else:
 return (c.start_time, 5)

def events_to_ml64(events, song, last_continue=False):
 """
 Takes a list of events (such as a measure or a track) and converts it to ML64 commands. If the previous
 list (such as the previous measure) had notes that were not completed, set last_continue.
 :param events:
 :type events:
 :param song:
 :type song:
 :param last_continue:
 :type last_continue:
 :return:
 :rtype: tuple
 """
 content = []
 for e in events:
 if isinstance(e, chirp.Note):
 if last_continue:
 tmp_note = make_ml64_notes('c', e.duration, song.metadata.ppq)
 else:
 tmp_note = make_ml64_notes(pitch_to_ml64_note_name(e.note_num), e.duration, song.metadata.ppq)
 content.append(tmp_note)
 last_continue = e.tied_from
 elif isinstance(e, Rest):
 tmp_note = make_ml64_notes('r', e.duration, song.metadata.ppq)
 content.append(tmp_note)
 last_continue = False
 elif isinstance(e, MeasureMarker):
 content.append('[m%d]' % e.measure_number)
 elif isinstance(e, ProgramEvent):
 content.append('i(%d)' % e.program)
 return (content, last_continue)

[docs]class ML64(ChiptuneSAKIO):
 @classmethod
 def cts_type(cls):
 return "ML64"

 def __init__(self):
 ChiptuneSAKIO.__init__(self)
 self.set_options(format='standard')

 @property
 def format(self):
 return self.get_option('format')[0].lower()

[docs] def to_bin(self, song, **kwargs):
 """
 Generates an ML64 string for a song

 :param song: song
 :type song: ChirpSong or mchirp.MChirpSong
 :return: ML64 encoding of song
 :rtype: str

 :keyword options:
 * **format** (string) - 'compact', 'standard', or 'measures';
 'measures' requires MChirp; the others convert from Chirp

 """
 self.set_options(**kwargs)
 if isinstance(song, chirp.ChirpSong):
 if self.format == 'm':
 raise ChiptuneSAKTypeError("Cannot export Chirp song to Measures format")
 else:
 return self.export_chirp_to_ml64(song)
 elif isinstance(song, mchirp.MChirpSong):
 if self.format != 'm':
 tmp_song = chirp.ChirpSong(song)
 tmp_song.quantize(*tmp_song.estimate_quantization())
 return self.export_chirp_to_ml64(tmp_song)
 else:
 return self.export_mchirp_to_ml64(song)
 else:
 raise ChiptuneSAKTypeError(f"Cannot export object of type {str(type(song))} to ML64")

[docs] def to_file(self, song, filename, **kwargs):
 """
 Writes ML64 to a file

 :param song: song
 :type song: ChirpSong or mchirp.MChirpSong
 :return: ML64 encoding of song
 :rtype: str

 :keyword options: see `to_bin()`

 """
 with open(filename, 'w') as f:
 f.write(self.to_bin(song, **kwargs))

[docs] def export_chirp_to_ml64(self, chirp_song):
 """
 Export song to ML64 format, with a minimum number of notes, either with or without measure comments.
 With measure comments, the comments appear within the measure but are not guaranteed to be exactly at the
 beginning of the measure, as tied notes will take precedence. In compact mode, the ML64 emitted is almost
 as small as possible.
 :param chirp_song:
 :type chirp_song:
 """
 output = []
 if not chirp_song.is_quantized():
 raise ChiptuneSAKQuantizationError("ChirpSong must be quantized for export to ML64")
 if any(t.qticks_notes < chirp_song.metadata.ppq // 4 for t in chirp_song.tracks):
 raise ChiptuneSAKQuantizationError("ChirpSong must be quantized to 16th notes or larger for ML64")
 if chirp_song.is_polyphonic():
 raise ChiptuneSAKPolyphonyError("All tracks must be non-polyphonic for export to ML64")

 mode = self.format

 output.append('ML64(1.3)')
 output.append('song(1)')
 output.append('tempo(%d)' % chirp_song.metadata.qpm)

 for it, t in enumerate(chirp_song.tracks):
 output.append('track(%d)' % (it + 1))
 track_events = []
 last_note_end = 0
 # Create a list of events for the entire track
 for n in t.notes:
 if n.start_time > last_note_end:
 track_events.append(Rest(last_note_end, n.start_time - last_note_end))
 track_events.append(n)
 last_note_end = n.start_time + n.duration
 track_events.extend(t.program_changes)
 if mode == 's': # Add measures for standard format
 last_note_end = max(n.start_time + n.duration for t in chirp_song.tracks for n in t.notes)
 measures = [m.start_time for m in chirp_song.measures_and_beats() if m.beat == 1]
 for im, m in enumerate(measures):
 if m < last_note_end:
 track_events.append(MeasureMarker(m, im + 1))
 track_events.sort(key=ml64_sort_order)
 # Now send the entire list of events to the ml64 creator
 track_content, *_ = events_to_ml64(track_events, chirp_song)
 output.append(''.join(track_content).strip())
 output.append('track(-)')
 output.append('song(-)')
 output.append('ML64(-)')
 return '\n'.join(output)

[docs] def export_mchirp_to_ml64(self, mchirp_song):
 """
 Export the song in ML64 format, grouping notes into measures. The measure comments are guaranteed to
 appear at the beginning of each measure; tied notes will be split to accommodate the measure markers.
 :param mchirp_song: An mchirp song
 :type mchirp_song: MChirpSong
 """
 output = []
 output.append('ML64(1.3)')
 output.append('song(1)')
 output.append('tempo(%d)' % mchirp_song.metadata.qpm)

 for it, t in enumerate(mchirp_song.tracks):
 output.append('track(%d)' % (it + 1))
 measures = t.measures
 last_continue = False
 for im, measure in enumerate(measures):
 measure_content, last_continue = events_to_ml64(measure.events, mchirp_song, last_continue)
 output.append(''.join(measure_content))
 output.append('track(-)')
 output.append('song(-)')
 output.append('ML64(-)')
 return '\n'.join(output)

 Source code for chiptunesak.one_pass_compress

import sys
import collections
from dataclasses import dataclass
import copy
from chiptunesak.base import *
from chiptunesak import goat_tracker
from chiptunesak.rchirp import RChirpOrderList, RChirpPattern, RChirpOrderEntry

"""
Compression routines the work for GoatTracker and may work for other formats

"""

MAX_PATTERN_LENGTH = 120

Transform = collections.namedtuple('Transform', ['transpose', 'stretch'])

@dataclass(order=True)
class Repeat:
 start_row: int = None #: Starting row of original pattern
 repeat_start: int = None #: Starting row of repeats
 length: int = 0 #: Length of repeated pattern
 xform: Transform = Transform(0, 0) #: Transform between repeats

def op_row_match(r1, r2, xf=None):
 if r1.note_num is None and r2.note_num is None:
 note_match = True
 elif r1.note_num is None or r2.note_num is None:
 note_match = False
 elif xf is not None:
 note_match = r1.note_num + xf.transpose == r2.note_num
 else:
 note_match = r1.note_num == r2.note_num
 return (
 note_match
 and r1.instr_num == r2.instr_num
 and r1.new_instrument == r2.new_instrument
 and r1.gate == r2.gate
 and r1.milliframe_len == r2.milliframe_len
 and r1.new_milliframe_tempo == r2.new_milliframe_tempo
)

def op_pattern_match(p1, p2, xf=None):
 if len(p1.rows) != len(p2.rows):
 return False
 n_rows = len(p1.rows)
 for ir in range(n_rows):
 if not op_row_match(p1.rows[ir], p2.rows[ir], xf):
 return False
 return True

def get_xform(row1, row2):
 """
 Gets the transform for transposition and time stretching to match two notes.
 :param row1:
 :type row1: RChirpRow
 :param row2:
 :type row2: RChirpRow
 :return:
 :rtype:
 """
 if row1.note_num is None and row2.note_num is None:
 return Transform(0, 1)
 elif row1.note_num is None or row2.note_num is None:
 return None
 transpose = row2.note_num - row1.note_num
 return Transform(transpose, 1) # not doing any stretch for now.

def apply_xform(row, xform):
 """
 Applies a transposition and stretching transform to a row, returning a new row
 :param row:
 :type row: RChirpRow
 :param xform:
 :type xform: Transform
 :return:
 :rtype: RChirpRow
 """
 ret_row = copy.copy(row)
 if ret_row.note_num is not None:
 ret_row.note_num += xform.transpose
 if ret_row.milliframe_len is not None:
 ret_row.milliframe_len *= xform.stretch
 return ret_row

[docs]class OnePass(ChiptuneSAKCompress):
 @classmethod
 def cts_type(cls):
 return 'OnePass'

 def __init__(self):
 ChiptuneSAKCompress.__init__(self)
 self.used = []
 self.set_options(min_transposition=-15, max_transposition=14, min_pattern_length=16)

 @staticmethod
 def objective_function(repeats, possible):
 r0 = repeats[0]
 nloops = len(repeats) + 1
 return nloops * r0.length + 5 * r0.length

 def disable_transposition(self):
 self.set_options(min_transposition=0, max_transposition=0)

[docs] def find_best_repeats(self, repeats):
 """
 Find the best repeats to use for a set of repeats. Right now, the metric is coverage, with the
 shortest repeats that give a certain coverage used, but the metric can easily be changed.
 :param repeats: list of valid repeats
 :type repeats: list of Repeat objects
 :return: list of optimal repeats
 :rtype: list of Repeat objects
 """
 min_length = self.get_option('min_pattern_length', MAX_PATTERN_LENGTH)
 lengths = list(sorted(set(r.length for r in repeats if r.length >= min_length), reverse=True))
 available_rows = self.used.count(False)
 max_objective = 0
 best_repeats = []
 for length in lengths:
 # Find a set of non-overlapping repeats for length
 tmp_repeats = sorted([r for r in repeats if r.length >= length])
 starts = list(sorted(set(r.start_row for r in tmp_repeats)))
 for start in starts:
 repeats_group = [r for r in tmp_repeats if r.start_row == start]
 # Any repeat contains any smaller repeat in it. So truncate them all.
 for i, r in enumerate(repeats_group):
 assert r.length >= length
 repeats_group[i].length = length
 r0 = repeats_group[0]
 last_used = r0.start_row + r0.length
 available_repeats = [r0]
 for r in repeats_group[1:]:
 if r.repeat_start >= last_used:
 available_repeats.append(r)
 last_used = r.repeat_start + r.length
 objective = self.objective_function(available_repeats, available_rows)
 if objective > max_objective:
 max_objective = objective
 best_repeats = copy.deepcopy(available_repeats)
 return best_repeats

[docs] def apply_pattern(self, pattern_index, repeats, order):
 """
 Given a pattern index and a set of repeats that match the pattern, mark the affected rows as used
 and insert them into the temporary orderlist
 :param pattern_index: Pattern number for the cstRChirpSong
 :type pattern_index: int
 :param repeats: Repeats that match the pattern
 :type repeats: list of Repeat objects
 :param order: temporary dictionary for the orderlist
 :type order: dictionary of (start_row, transposition) tuples
 :return: order
 :rtype: orderlist dictionary
 """
 for r in repeats:
 self.used[r.start_row:r.start_row + r.length] = [True for i in range(r.length)]
 self.used[r.repeat_start:r.repeat_start + r.length] = [True for i in range(r.length)]
 order[r.start_row] = (pattern_index, 0)
 # print('length %d at row %d' % (r.length, r.start_row))
 order[r.repeat_start] = (pattern_index, r.xform.transpose)
 # print('length %d at row %d' % (r.length, r.repeat_start))
 return order

[docs] def trim_repeats(self, repeats):
 """
 Trims the list of repeats to exclude rows that have been used.
 :param repeats: list of all repeats
 :type repeats: list of Repeat objects
 :return: list of valid repeats
 :rtype: list of Repeat objects
 """
 min_length = self.get_option('min_pattern_length', 126)
 ret_repeats = []
 for r in repeats:
 if self.used[r.start_row] or self.used[r.repeat_start]:
 continue
 l_tmp = 0
 while l_tmp < r.length and not self.used[r.start_row + l_tmp] and not self.used[r.repeat_start + l_tmp]:
 l_tmp += 1
 r.length = l_tmp
 if r.length >= min_length:
 ret_repeats.append(r)
 return ret_repeats

[docs] def get_hole_lengths(self):
 """
 Creates list of the holes of unused rows in a set of rows.
 :return:
 :rtype:
 """
 retval = []
 n_rows = len(self.used)
 current_hole_size = 0
 for i in range(n_rows):
 if not self.used[i]:
 current_hole_size += 1
 else:
 if current_hole_size > 0:
 retval.append(current_hole_size)
 current_hole_size = 0
 if current_hole_size > 0:
 retval.append(current_hole_size)
 return retval

[docs] @staticmethod
 def add_rchirp_pattern_to_song(rchirp_song, pattern):
 """
 Adds a pattern to an RChirpSong. It checks to be sue that the pattern has not been used.
 :param rchirp_song: An RChirpSong
 :type rchirp_song: rchirpSong
 :param pattern: the pattern to add to the song
 :type pattern: rchirp.RChirpPattern
 :return: Index of pattern
 :rtype: int
 """
 for ip, p in enumerate(rchirp_song.patterns):
 if op_pattern_match(p, pattern):
 return ip
 rchirp_song.patterns.append(pattern)
 return len(rchirp_song.patterns) - 1

[docs] @staticmethod
 def make_orderlist(order):
 """
 Converts the temporary dictionary-based orderlist into an RChirp-compatible orderlist
 :param order: dictionary orderlist (created internally)
 :type order: dictionary of (start_row, transposition)
 :return: orderlist to put into a rchirp.RChirpVoice
 :rtype: rchirp.RChirpOrderList
 """
 orderlist = RChirpOrderList()
 last = RChirpOrderEntry(0, 0, 0)
 for index in sorted(order):
 p_num, trans = order[index]
 if p_num == last.pattern_num and trans == last.transposition:
 last.repeats += 1
 else:
 if last.repeats > 0:
 orderlist.append(last)
 last = RChirpOrderEntry(p_num, trans, 1)
 orderlist.append(last)
 return orderlist

[docs] @staticmethod
 def validate_orderlist(patterns, order, total_length):
 """
 Validates that the sparse orderlist is self-consistent.
 :param patterns:
 :type patterns:
 :param order:
 :type order:
 :return:
 :rtype: bool
 """
 retval = True
 positions = sorted(order)
 position_sum = 0
 for p in positions:
 if position_sum != p:
 print("Order mismatch at position %d: %d" % (position_sum, p))
 retval = False
 o = order[p]
 position_sum += len(patterns[o[0]].rows)
 if position_sum != total_length:
 return False
 return retval

[docs]class OnePassGlobal(OnePass):
 """
 Global greedy compression algorithm for GoatTracker

 This algorithm attempts to find the best repeats to compress at every iteration; it begins by finding
 all possible repeats longer than min_pattern_length (which is O(n^2)) and then at each iteration
 chooses the set of repeats with the highest score. The rows used are removed and the algorithm iterates.
 At each iteration the available repeats are trimmed to avoid the used rows.
 """
 @classmethod
 def cts_type(cls):
 return 'OnePassGlobal'

 def __init__(self):
 OnePass.__init__(self)

[docs] def compress(self, rchirp_song, **kwargs):
 """
 Compresses the RChirp using a single-pass global greedy pattern detection. It finds all repeats in the song and
 turns the lrgest one into a pattern. It continues this operation until the longest repeat is shorter than
 `min_pattern_length`, after which it fills in the gaps.

 :param rchirp_song: RChirp song to compress
 :type rchirp_song: rchirp.RChirpSong
 :return: rchirp_song with compression information added
 :rtype: rchirp.RChirpSong

 :keyword options:
 * **min_pattern_length** (int) - minimum pattern length in rows
 * **min_transpose** (int) - minimum transposition, in semitones, for a pattern to be a match (GoatTracker = -15)
 * **max_transpose** (int) - maximum transposition, in semitones, allowed for a pattern to be a match (GoatTracker = +14)
 * for no transposition, set both **min_transpose** and **max_transpose** to 0.
 """
 self.set_options(**kwargs)
 return self.compress_global(rchirp_song)

[docs] def find_all_repeats(self, rows):
 """
 Find every possible repeat in the rows longer than a minimum length
 :param rows: list of rows to search for repeats
 :type rows: list of cts.RChirpRows
 :return: list of all repeats found
 :rtype: list of Repeat
 """
 min_length = self.get_option('min_pattern_length', MAX_PATTERN_LENGTH)
 n_rows = len(rows)
 min_transpose = self.get_option('min_transpose', 0)
 max_transpose = self.get_option('max_transpose', 0)
 repeats = []
 for base_position in range(n_rows - min_length):
 last_end = base_position
 for trial_position in range(base_position, n_rows - min_length):
 if trial_position < last_end:
 continue
 xf = get_xform(rows[base_position], rows[trial_position])
 if xf is None:
 continue
 if xf.transpose < min_transpose or xf.transpose > max_transpose:
 continue
 pattern_length = 0
 ib = base_position
 it = trial_position
 while it < n_rows \
 and pattern_length < MAX_PATTERN_LENGTH \
 and op_row_match(rows[ib], rows[it], xf) \
 and not self.used[ib] \
 and not self.used[it]:
 ib += 1
 it += 1
 pattern_length += 1
 if ib >= trial_position:
 break
 if min_length <= pattern_length <= MAX_PATTERN_LENGTH:
 repeats.append(Repeat(base_position, trial_position, pattern_length, xf))
 last_end = trial_position + pattern_length
 return repeats

[docs] def compress_global(self, rchirp_song):
 """
 Global greedy compression algorithm for GoatTracker

 This algorithm attempts to find the best repeats to compress at every iteration; it begins by finding
 all possible repeats longer than min_pattern_length (which is O(n^2)) and then at each iteration
 chooses the set of repeats with the highest score. The rows used are removed and the algorithm iterates.
 At each iteration the available repeats are trimmed to avoid the used rows.

 :param rchirp_song: RChirp song to compress
 :type rchirp_song: rchirp.RChirpSong
 :return: rchirp_song with compression information added
 :rtype: rchirp.RChirpSong
 """

 rchirp_song.patterns = [] # Get rid of any patterns from previous compression
 for iv, v in enumerate(rchirp_song.voices):
 filled_rows = v.make_filled_rows()
 self.used = [False for r in filled_rows]
 n_rows = len(filled_rows)
 order = {}
 repeats = self.find_all_repeats(filled_rows)
 while len(repeats) > 0:
 best_repeats = self.find_best_repeats(repeats)
 if len(best_repeats) > 0:
 r0 = best_repeats[0]
 rchirp_song.patterns.append(RChirpPattern(filled_rows[r0.start_row: r0.start_row + r0.length]))
 pattern_index = len(rchirp_song.patterns) - 1
 order = self.apply_pattern(pattern_index, best_repeats, order)
 repeats = self.trim_repeats(repeats)
 while any(not u for u in self.used):
 gap_start = next(iu for iu, u in enumerate(self.used) if not u)
 gap_end = gap_start
 while gap_end < n_rows and not self.used[gap_end]:
 gap_end += 1
 if gap_end - gap_start >= MAX_PATTERN_LENGTH:
 break
 tmp_patt = RChirpPattern(filled_rows[gap_start: gap_end])
 pattern_index = self.add_rchirp_pattern_to_song(rchirp_song, tmp_patt)
 order[gap_start] = (pattern_index, 0)
 for ig in range(gap_start, gap_end):
 self.used[ig] = True
 assert all(self.used), "Not all rows were used!"
 if not self.validate_orderlist(rchirp_song.patterns, order, len(filled_rows)):
 exit('Orderlist mismatch')
 rchirp_song.voices[iv].orderlist = self.make_orderlist(order)
 rchirp_song.compressed = True
 return rchirp_song

[docs]class OnePassLeftToRight(OnePass):
 """
 Left-to-right left single-pass compression for GoatTracker

 This compression algorithm is the fastest; it can compress even the longest song in less than a second.
 It compresses the song in a manner similar to how a GoatTracker song would be constructed; starting from the
 beginning row, it finds the repeats of rows starting at that position that give the best score, and
 then moves to the first gap in the remaining rows and repeats. If the algorithm does not find any suitable
 repeats at a position, it moves to the next, and the unused rows are put into patterns after all the repeats
 have been found.
 """
 @classmethod
 def cts_type(cls):
 return 'OnePassLeftToRight'

 def __init__(self):
 OnePass.__init__(self)

[docs] def compress(self, rchirp_song, **kwargs):
 """
 Compresses the RChirp using a single-pass left-to-right pattern detection. Starting at the first row, it
 finds the longest pattern that repeats, and if it is longer than `min_pattern_length` it removes the pattern and
 all repeats from the remaining rows. It then performs the same operation on the first available row until all
 patterns have been found, and then fills in the gaps.

 :param rchirp_song: RChirp song to compress
 :type rchirp_song: rchirp.RChirpSong
 :return: rchirp_song with compression information added
 :rtype: rchirp.RChirpSong

 :keyword options:
 * **min_pattern_length** (int) - minimum pattern length in rows
 * **min_transpose** (int) - minimum transposition, in semitones, for a pattern to be a match (GoatTracker = -15)
 * **max_transpose** (int) - maximum transposition, in semitones, allowed for a pattern to be a match (GoatTracker = +14)
 * for no transposition, set both **min_transpose** and **max_transpose** to 0.

 """
 self.set_options(**kwargs)
 return self.compress_lr(rchirp_song)

 def find_repeats_starting_at(self, index, rows):
 min_length = self.get_option('min_pattern_length', MAX_PATTERN_LENGTH)
 n_rows = len(rows)
 min_transpose = self.get_option('min_transpose', 0)
 max_transpose = self.get_option('max_transpose', 0)
 repeats = []
 base_position = index
 last_end = base_position
 for trial_position in range(base_position, n_rows - min_length):
 if self.used[trial_position] or trial_position < last_end:
 continue
 xf = get_xform(rows[base_position], rows[trial_position])
 if xf is None:
 continue
 if xf.transpose < min_transpose or xf.transpose > max_transpose:
 continue
 pattern_length = 0
 ib = base_position
 it = trial_position
 while it < n_rows \
 and pattern_length < MAX_PATTERN_LENGTH \
 and op_row_match(rows[ib], rows[it], xf) \
 and not self.used[ib] \
 and not self.used[it]:
 ib += 1
 it += 1
 pattern_length += 1
 if ib >= trial_position:
 break
 if min_length <= pattern_length <= MAX_PATTERN_LENGTH:
 repeats.append(Repeat(base_position, trial_position, pattern_length, xf))
 last_end = trial_position + pattern_length
 return repeats

[docs] def compress_lr(self, rchirp_song):
 """
 Right-to-left single-pass compression for GoatTracker

 This compression algorithm is the fastest; it can compress even the longest song in less than a second.
 It compresses the song in a manner similar to how a GT song would be constructed; starting from the
 beginning row, it finds the repeats of rows starting at that position that give the best score, and
 then moves to the first gap in the remaining rows and repeats. If the algorithm does not find any suitable
 repeats at a position, it moves to the next, and the unused rows are put into patterns after all the repeats
 have been found.

 :param rchirp_song: RChirp song to compress
 :type rchirp_song: rchirp.RChirpSong
 :return: rchirp_song with compression information added
 :rtype: rchirp.RChirpSong
 """
 min_length = self.get_option('min_pattern_length', 126)
 rchirp_song.patterns = [] # Get rid of any patterns from previous compression
 for iv, v in enumerate(rchirp_song.voices):
 filled_rows = v.make_filled_rows()
 self.used = [False for r in filled_rows]
 n_rows = len(filled_rows)
 order = {}
 for i in range(n_rows - min_length):
 if self.used[i]:
 continue
 repeats = self.find_repeats_starting_at(i, filled_rows)
 while len(repeats) > 0:
 best_repeats = self.find_best_repeats(repeats)
 if len(best_repeats) > 0:
 r0 = best_repeats[0]
 rchirp_song.patterns.append(RChirpPattern(filled_rows[r0.start_row: r0.start_row + r0.length]))
 pattern_index = len(rchirp_song.patterns) - 1
 order = self.apply_pattern(pattern_index, best_repeats, order)
 repeats = self.trim_repeats(repeats)
 while any(not u for u in self.used):
 gap_start = next(iu for iu, u in enumerate(self.used) if not u)
 gap_end = gap_start
 while gap_end < n_rows and not self.used[gap_end]:
 gap_end += 1
 if gap_end - gap_start >= MAX_PATTERN_LENGTH:
 break
 tmp_patt = RChirpPattern(filled_rows[gap_start: gap_end])
 pattern_index = self.add_rchirp_pattern_to_song(rchirp_song, tmp_patt)
 order[gap_start] = (pattern_index, 0)
 for ig in range(gap_start, gap_end):
 self.used[ig] = True
 assert all(self.used), "Not all rows were used!"
 if not self.validate_orderlist(rchirp_song.patterns, order, len(filled_rows)):
 exit('Orderlist mismatch')
 rchirp_song.voices[iv].orderlist = self.make_orderlist(order)
 rchirp_song.compressed = True
 return rchirp_song

def validate_gt_limits(rchirp_song):
 n_patterns = len(rchirp_song.patterns)
 if n_patterns > goat_tracker.GT_MAX_PATTERNS_PER_SONG:
 print(f'Too many patterns: {n_patterns}', file=sys.stderr)
 return False
 for iv, v in enumerate(rchirp_song.voices):
 orderlist_length = get_gt_orderlist_length(v.orderlist)
 if orderlist_length > goat_tracker.GT_MAX_ELM_PER_ORDERLIST:
 print(f'Orderlist too long in voice {iv+1}: {orderlist_length} bytes', file=sys.stderr)
 return False
 for ip, p in enumerate(rchirp_song.patterns):
 if len(p.rows) + 1 > goat_tracker.GT_MAX_ROWS_PER_PATTERN:
 print(f'Pattern {ip} too long: {len(p.rows)} rows', file=sys.stderr)
 return False
 return True

def get_gt_orderlist_length(orderlist):
 """
 Calculates the length of the orderlist in the GoatTracker .sng file.
 A simple pattern with no transposition played once requires 1 entry
 If there is a transposition change, that adds another entry
 Multiple repeats add one entry unless there are more than 16, in which case
 2 bytes are added per 16 repeats; one for the repeat number and another for the
 pattern number (none is needed for transposition and it cannot change for repeats).
 :param orderlist: An orderlist from a voice
 :type orderlist: rchirp.RChirpOrderlist
 :return: Number of entries required for the GoatTracker orderlist
 :rtype: int
 """
 retval = 2 # Start and end commands
 prev_transposition = 0
 for entry in orderlist:
 if entry.transposition != prev_transposition:
 retval += 1
 prev_transposition = entry.transposition
 if entry.repeats > 16:
 retval += (2 * (entry.repeats // 16)) # 2 bytes for each repeat
 if entry.repeats % 16 != 0:
 retval += 1
 if entry.repeats % 16 != 1:
 retval += 1
 return retval

GT_PATTERN_OVERHEAD = 5

def estimate_song_size(rchirp_song):
 total = GT_PATTERN_OVERHEAD * len(rchirp_song.patterns)
 total += sum(len(p.rows) for p in rchirp_song.patterns)
 total += sum(len(v.orderlist) for v in rchirp_song.voices)
 return total

 Source code for chiptunesak.rchirp

cstRChirp.py
#
RChirp is a row-based version of chirp, useful for export from and to trackers,
and other interrupt-based music players.
Rows can be constructed and accessed in both sparse (dictionary-like) and contiguous (list-like) forms.
Optionally, rows can be organized into orderlists of (contiguous) row patterns

import copy
from functools import reduce
import math
from chiptunesak import chirp
from chiptunesak.base import *
from chiptunesak import constants
from dataclasses import dataclass

[docs]@dataclass(order=True)
class RChirpRow:
 """
 The basic RChirp row
 """
 row_num: int = None #: rchirp row number
 milliframe_num: int = None #: frames / 1000 since time 0
 note_num: int = None #: MIDI note number; None means no note asserted
 instr_num: int = None #: Instrument number
 new_instrument: int = None #: Indicates new instrument number; None means no change
 gate: bool = None #: Gate on/off tri-value True/False/None; None means no gate change
 milliframe_len: int = None #: frames * 1000 to process this row (until next row)
 new_milliframe_tempo: int = None #: Indicates new tempo for channel (not global); None means no change

 def match(self, other):
 if self.row_num != other.row_num \
 or self.milliframe_num != other.milliframe_num \
 or self.milliframe_len != other.milliframe_len:
 return False
 if self.note_num is not None or other.note_num is not None:
 if self.note_num != other.note_num:
 return False
 if self.gate is not None or other.gate is not None:
 if self.gate != other.gate:
 return False
 if self.instr_num is not None or other.instr_num is not None:
 if self.instr_num != other.instr_num:
 return False
 if self.new_instrument is not None and other.new_instrument is not None:
 if self.new_instrument != other.new_instrument:
 return False
 if self.new_milliframe_tempo is not None and other.new_milliframe_tempo is not None: # only check if both
 if self.new_milliframe_tempo != other.new_milliframe_tempo:
 return False
 return True

[docs]@dataclass
class RChirpOrderEntry:
 pattern_num: int = None
 transposition: int = 0
 repeats: int = 1

[docs]class RChirpOrderList(list):
 """
 An orderlist is a list of RChirpOrderEntry instances
 """
 pass

[docs]class RChirpPattern:
 """
 A pattern made up of a set of rows
 """
 def __init__(self, rows=None):
 self.rows = [] #: List of RChirpRow instances (NOT a dictionary! No gaps allowed!)

 if rows is not None:
 base_row = min(r.row_num for r in rows) # Starting row frame number
 base_mf = min(r.milliframe_num for r in rows) # Starting milliframe number
 for r in rows:
 r.row_num -= base_row
 r.milliframe_num -= base_mf
 assert r.milliframe_num >= 0, "Illegal frame number"
 self.rows.append(r)
 self.rows.sort() # Sort the rows by the row number member.

 def __str__(self):
 return '\n '.join(str(r) for r in self.rows)

[docs]class RChirpVoice:
 """
 The representation of a single voice; contains rows
 """
 def __init__(self, rchirp_song, chirp_track=None):
 self.rchirp_song = rchirp_song #: The song this voice belongs to
 self.rows = collections.defaultdict(RChirpRow) #: dictionary: K:row num, V: RChirpRow instance
 self.orderlist = RChirpOrderList()
 self.name = ''
 if chirp_track is not None:
 if not isinstance(chirp_track, chirp.ChirpTrack):
 raise ChiptuneSAKTypeError("MChirpTrack init can only import ChirpTrack objects.")
 else:
 self.import_chirp_track(chirp_track)

 @property
 def milliframe_indexed_rows(self):
 """
 Returns dictionary of rows indexed by milliframe number

 A voice holds onto a dictionary of rows keyed by row number. This method returns
 a dictionary of rows keyed by milliframe number.

 :return: A dictionary of rows keyed by milliframe number
 :rtype: defaultdict
 """
 return_val = {v.milliframe_num: v for k, v in self.rows.items()}
 return_val = collections.defaultdict(RChirpRow, return_val)
 return return_val

 @property
 def sorted_rows(self):
 """
 Returns a list of row-number sorted rows for the voice

 :return: A sorted list of RChirpRow instances
 :rtype: list
 """
 return [self.rows[k] for k in sorted(self.rows.keys())]

[docs] def append_row(self, rchirp_row):
 """
 Appends a row to the voice's collection of rows

 This is a helper method for treating rchirp like a list of contiguous rows,
 instead of a sparse dictionary of rows

 :param rchirp_row: A row to "append"
 :type rchirp_row: RChirpRow
 """
 insert_row = copy.deepcopy(rchirp_row)
 insert_row.row_num = self.next_row_num
 self.rows[insert_row.row_num] = insert_row

 @property
 def last_row(self):
 """
 Returns the row with the largest milliframe number (latest in time)

 :return: row with latest milliframe number
 :rtype: RChirpRow
 """
 return None if len(self.rows) == 0 else self.rows[max(self.rows, key=self.rows.get)]

 @property
 def next_row_num(self):
 """
 Returns one greater than the largest row number held onto by the voice

 :return: largest row number + 1
 :rtype: int
 """
 return 0 if len(self.rows) == 0 else max(self.rows) + 1

[docs] def is_contiguous(self):
 """
 Determines if the voice's rows are contiguous. This function requires that row numbers
 are consecutive and that the corresponding milliframe numbers have no gaps.

 :return: True if rows are contiguous, False if not
 :rtype: bool
 """
 start_row = 0 if len(self.rows) == 0 else min(self.rows)
 curr_mf, curr_row = self.rows[start_row].milliframe_num, self.rows[start_row].row_num
 for row_num in sorted(self.rows):
 if self.rows[row_num].row_num != curr_row:
 return False
 if self.rows[row_num].milliframe_num != curr_mf:
 return False
 curr_row += 1
 curr_mf += self.rows[row_num].milliframe_len
 return True

[docs] def integrity_check(self):
 """
 Finds problems with a voice's row data

 :return: True if all integrity checks pass
 :raises AssertionError: Various integrity failure assertions possible
 """
 row_nums = []
 mf_nums = []
 for k, row in self.rows.items():
 assert k == row.row_num, "Error: RChirpVoice has a row number that doesn't match its row number index"
 assert row.row_num is not None, "Error: RChirpRow row cannot have row_num = None"
 assert row.row_num >= 0, "Error: RChirpRow row cannot have a negative row_num"
 assert row.milliframe_num is not None, "Error: RChirpRow row cannot have milliframe_num = None"
 assert row.milliframe_num >= 0, "Error: RChirpRow row cannot have a negative milliframe_num"
 if row.note_num is not None:
 assert row.note_num >= 0, "Error: RChirpRow row cannot have a negative note_num"
 if row.new_instrument is not None:
 assert row.new_instrument >= 0, "Error: RChirpRow row cannot have a negative instrument"
 assert row.milliframe_len is not None, "Error: RChirpRow row cannot have milliframe_len = None"
 assert row.milliframe_len >= 0, "Error: RChirpRow row cannot have a negative milliframe_len"
 row_nums.append(row.row_num)
 mf_nums.append(row.milliframe_num)
 assert len(row_nums) == len(set(row_nums)), "Error: RChirpVoice row numbers must be unique"
 assert len(mf_nums) == len(set(mf_nums)), "Error: RChirpVoice rows' milliframe_nums must be unique"
 return True

 def _find_closest_row_after(self, row):
 """
 Finds the first row in the sparse representation after a given time

 :param row: row number of the given time
 :type row: int
 :return: row number of next row in sparse representation
 :rtype: int
 """
 for r in sorted(self.rows):
 if r >= row:
 return r
 if len(self.rows) == 0:
 return 0
 else:
 return self.last_row.row_num

[docs] def make_filled_rows(self):
 """
 Creates a contiguous set of rows from a sparse row representation

 :return: filled rows
 :rtype: list of rows
 """
 ret_rows = []
 max_row = max(self.rows[rn].row_num for rn in self.rows)
 assert 0 in self.rows, "No row 0 in rows" # Row 0 should exist!
 last_row = self.rows[0]
 current_instrument = 1
 for rn in range(max_row + 1): # Because max_row needs to be included!
 if rn in self.rows:
 last_row = copy.copy(self.rows[rn])
 if last_row.new_instrument is not None:
 current_instrument = last_row.new_instrument
 if last_row.note_num is not None:
 last_row.instr_num = current_instrument
 ret_rows.append(last_row)
 else:
 tmp_row = RChirpRow()
 tmp_row.row_num = rn
 tmp_row.milliframe_num = last_row.milliframe_num + last_row.milliframe_len
 tmp_row.milliframe_len = last_row.milliframe_len
 last_row = copy.copy(tmp_row)
 ret_rows.append(last_row)
 return ret_rows

 def _fixup_rows(self):
 """
 Goes through the rows and adds missing elements
 """
 last = copy.deepcopy(self.rows[0])
 for r in sorted(self.rows):
 if last.row_num is None:
 print("Row number is None!")
 row = self.rows[r]
 # Make sure the row has a row_num
 if row.row_num is None:
 row.row_num = r
 # Milliframe number is derived from the last row
 if row.milliframe_num is None:
 row.milliframe_num = last.milliframe_num + (row.row_num - last.row_num) * last.milliframe_len
 # If no milliframe length, use the one from the last row
 if row.milliframe_len is None:
 row.milliframe_len = last.milliframe_len
 # If the row is a note off, set the note number
 if row.gate is False:
 row.note_num = last.note_num
 last = copy.deepcopy(row)
 self.rows[r] = row

[docs] def orderlist_to_rows(self):
 """
 Convert an orderlist with patterns into rows

 :return: rows
 :rtype: list of rows
 """
 ret_rows = []
 current_row = 0
 current_mf = 0
 irow = 0
 for entry in self.orderlist:
 patt = entry.pattern_num
 trans = entry.transposition
 if patt >= len(self.rchirp_song.patterns):
 raise ChiptuneSAKContentError(f"Illegal pattern number: {patt}")
 for _ in range(entry.repeats):
 for r in self.rchirp_song.patterns[patt].rows:
 tmp_row = copy.copy(r)
 tmp_row.row_num = current_row
 tmp_row.milliframe_num = current_mf
 if tmp_row.note_num is not None:
 tmp_row.note_num += trans
 current_row += 1
 current_mf += tmp_row.milliframe_len
 ret_rows.append(tmp_row)
 irow += 1
 return ret_rows

[docs] def validate_orderlist(self):
 """
 Validate that the orderlist is self-consistent and generates the correct set of rows

 :return: True if consistent
 :rtype: bool
 """
 filled_rows = self.make_filled_rows()
 compressed_rows = self.orderlist_to_rows()
 if len(filled_rows) != len(compressed_rows):
 return False
 for irow, c_row in enumerate(compressed_rows):
 if not c_row.match(filled_rows[irow]):
 print(f"row mismatch in voice {self.name} at row {irow}:")
 print(f" compressed: {c_row}")
 print(f" original: {filled_rows[irow]}")
 return False
 return True

[docs] def import_chirp_track(self, chirp_track):
 """
 Imports a Chirp track into a raw RChirpVoice object. No compression or conversion to patterns
 and orderlists performed. Track must be non-polyphonic and quantized.

 :param chirp_track: A chirp track
 :type chirp_track: ChirpTrack
 :raises ChiptuneSAKQuantizationError: Thrown if chirp track is not quantized
 :raises ChiptuneSAKPolyphonyError: Thrown if a single voice contains polyphony
 """
 if not chirp_track.is_quantized():
 raise ChiptuneSAKQuantizationError("Track must be quantized to generate RChirp.")
 if chirp_track.is_polyphonic():
 raise ChiptuneSAKPolyphonyError("Track must be non-polyphonic to generate RChirp.")

 self.name = chirp_track.name

 # Right now don't allow tempo variations; just use the initial tempo
 ticks_per_frame = ((self.rchirp_song.metadata.qpm * self.rchirp_song.metadata.ppq / 60)
 / constants.ARCH[self.rchirp_song.arch].frame_rate)
 frames_per_row = int(round(chirp_track.qticks_notes // ticks_per_frame))
 ticks_per_row = ticks_per_frame * frames_per_row
 rows_per_quarter = int(round(self.rchirp_song.metadata.ppq / ticks_per_row))
 frames_per_quarter = rows_per_quarter * frames_per_row
 frames_per_row = frames_per_quarter * chirp_track.qticks_notes // self.rchirp_song.metadata.ppq
 ticks_per_row = chirp_track.qticks_notes
 tmp_rows = collections.defaultdict(RChirpRow)

 # Always insert a row number 0
 tmp_rows[0] = RChirpRow(row_num=0,
 milliframe_num=0,
 milliframe_len=frames_per_row * 1000,
 new_milliframe_tempo=frames_per_row * 1000)
 # Insert the notes into the voice
 for n in chirp_track.notes:
 n_row = int(n.start_time // ticks_per_row) # Note: if tempo varies this gets complicated.
 tmp_rows[n_row].row_num = n_row
 tmp_rows[n_row].milliframe_num = n_row * frames_per_row * 1000
 tmp_rows[n_row].note_num = n.note_num
 tmp_rows[n_row].gate = True
 tmp_rows[n_row].milliframe_len = frames_per_row * 1000
 e_row = int((n.start_time + n.duration) // ticks_per_row)
 tmp_rows[e_row].gate = False

 self.rows = tmp_rows

 # Program changes will only occur on rows that already have note content.
 # MIDI instruments are mapped to RChirp instruments via the song's program_map
 for p in sorted(chirp_track.program_changes):
 n_row = self._find_closest_row_after(p.start_time / ticks_per_row)
 new_instrument = self.rchirp_song.program_map[p.program]
 tmp_rows[n_row].new_instrument = int(new_instrument)

 self._fixup_rows()

[docs]class RChirpSong(ChiptuneSAKBase):
 """
 The representation of an RChirp song. Contains voices, voice groups, and metadata.
 """
 @classmethod
 def cts_type(cls):
 return 'RChirp'

 def __init__(self, chirp_song=None):
 ChiptuneSAKBase.__init__(self)
 self.arch = constants.DEFAULT_ARCH #: Architecture
 self.voices = [] #: List of RChirpVoice instances
 self.voice_groups = [] #: Voice groupings for lowering to multiple chips
 self.patterns = [] #: Patterns to be shared among the voices
 self.metadata = None #: Song metadata (author, copyright, etc.)
 self.other = None #: Other meta-events in song
 self.compressed = False #: Has song been through compression algorithm?
 self.program_map = {} #: Midi-to-RChirp instrument map

 if chirp_song is None:
 self.metadata = SongMetadata()
 else:
 self.metadata = copy.deepcopy(chirp_song.metadata)
 if not isinstance(chirp_song, chirp.ChirpSong):
 raise ChiptuneSAKTypeError("MChirpSong init can only import ChirpSong objects")
 else:
 self.import_chirp_song(chirp_song)

[docs] def to_chirp(self, **kwargs):
 """
 Converts the RChirpSong into a ChirpSong

 :return: Chirp song
 :rtype: ChirpSong
 """
 self.set_options(**kwargs)
 return self.convert_to_chirp()

[docs] def import_chirp_song(self, chirp_song):
 """
 Imports a ChirpSong

 :param chirp_song: A chirp song
 :type chirp_song: ChirpSong
 :raises ChiptuneSAKQuantizationError: Thrown if chirp track is not quantized
 :raises ChiptuneSAKPolyphonyError: Thrown if a single voice contains polyphony
 """
 if chirp_song.cts_type() != 'Chirp':
 raise ChiptuneSAKTypeError("RChirp can only import ChirpSong objects")
 if not chirp_song.is_quantized():
 raise ChiptuneSAKQuantizationError("ChirpSong must be quantized to create RChirp.")
 if chirp_song.is_polyphonic():
 raise ChiptuneSAKPolyphonyError("ChirpSong must not be polyphonic to create RChirp.")
 arch = chirp_song.get_option('arch', self.arch)
 if arch not in constants.ARCH:
 raise ChiptuneSAKValueError("Illegal architecture name {self.arch}")
 self.arch = arch

 self.program_map = self.make_program_map(chirp_song)
 for t in chirp_song.tracks:
 self.voices.append(RChirpVoice(self, t))
 self.metadata = copy.deepcopy(chirp_song.metadata)
 self.other = copy.deepcopy(chirp_song.other)
 self.compressed = False

[docs] def remove_tempo_changes(self):
 """
 Removes tempo changes and sets milliframes_per_row constant for the entire song. This
 method is used to eliminate accelerandos and ritarandos throughout the song for better
 conversion to Chirp.

 :return: True on success
 :rtype: bool
 """
 for v in self.voices:
 r_min = min(v.rows)
 first_row = v.rows[r_min]
 milliframes_per_row = first_row.milliframe_len
 if first_row.new_milliframe_tempo is None:
 first_row.new_milliframe_tempo = milliframes_per_row
 for r in v.rows:
 if r == r_min:
 continue
 row = v.rows[r]
 row.milliframe_num = r * milliframes_per_row
 row.milliframe_len = milliframes_per_row
 row.new_milliframe_tempo = None
 v.rows[r] = row
 return True

 # If true, RChirp was compressed or created from a source that uses patterns, etc.
[docs] def has_patterns(self):
 """
 Does this RChirp have patterns (and thus, presumably, orderlists)?

 :return: True if there are patterns
 :rtype: bool
 """
 return len(self.patterns) > 0 # This should be a good enough check?

[docs] def make_program_map(self, chirp_song):
 """
 Creates a program map of Chirp program numbers (patches) to instruments

 :param chirp_song: chirp song
 :type chirp_song: ChirpSong
 :return: program_map
 :rtype: dict of {chirp_program:rchirp_instrument}
 """
 program_map = self.program_map
 instrument_num = 1
 for t in chirp_song.tracks:
 for p in t.program_changes:
 if p.program not in program_map:
 program_map[p.program] = instrument_num
 instrument_num += 1
 return program_map

[docs] def is_contiguous(self):
 """
 Determines if the voices' rows are contiguous, without gaps in time

 :return: True if rows are contiguous, False if not
 :rtype: bool
 """
 return all(voice.is_contiguous() for voice in self.voices)

[docs] def integrity_check(self):
 """
 Finds problems with voices' row data

 :return: True if integrity checks pass for all voices
 :raises AssertionError: Various integrity failure assertions possible
 """
 return all(voice.integrity_check() for voice in self.voices)

[docs] def set_row_delta_values(self):
 """
 RChirpRow has some delta fields that are only set when there's a change from previous rows.

 This method goes through the rows, finds those changes and sets the appropriate fields

 """
 for debug_voice_index, voice in enumerate(self.voices):
 prev_tempo = prev_instr = -1
 for rchirp_row in voice.sorted_rows:
 if rchirp_row.instr_num is not None and rchirp_row.instr_num != prev_instr:
 rchirp_row.new_instrument = rchirp_row.instr_num
 prev_instr = rchirp_row.instr_num

 # This can can lead to lots of tempo changes when a tracker import is unrolling a global
 # funk tempo (tempo that alternates with each row to achieve swing)
 if rchirp_row.milliframe_len is not None and rchirp_row.milliframe_len != prev_tempo:
 rchirp_row.new_milliframe_tempo = rchirp_row.milliframe_len
 prev_tempo = rchirp_row.milliframe_len

[docs] def milliframe_indexed_voices(self):
 """
 Returns a list of dicts, where many voices hold onto many rows. Rows indexed by
 milliframe number.

 :return: a list of dicts (voices->rows)
 :rtype: list
 """
 result = []
 for voice in self.voices:
 result.append({v.milliframe_num: v for k, v in voice.rows.items()})
 return result

 def validate_compression(self):
 if not self.compressed:
 return False
 return all(v.validate_orderlist() for v in self.voices)

 # Create CVS debug output
[docs] def note_time_data_str(self):
 """
 Returns a comma-separated value list representation of the rchirp data

 :return: CSV string
 :rtype: str
 """
 def _str_with_null_handling(a_value):
 return str(a_value) if a_value is not None else ''

 max_tick = max(self.voices[i].last_row.milliframe_num for i in range(len(self.voices)))

 channels_time_events = self.milliframe_indexed_voices

 csv_header = ["milliframe"]
 for i in range(len(self.voices)):
 csv_header.append("v%d row #" % (i + 1))
 csv_header.append("v%d note" % (i + 1))
 csv_header.append("v%d on/off/none" % (i + 1))
 csv_header.append("v%d tempo update" % (i + 1))

 csv_rows = []
 prev_tempo = [-1] * len(self.voices)
 for tick in range(max_tick + 1):
 # if any channel has a entry at this tick, create a row for all channels
 if any(tick in channels_time_events[i] for i in range(len(self.voices))):
 a_csv_row = ["%d" % tick]
 for i in range(len(self.voices)):
 if tick in channels_time_events[i]:
 event = channels_time_events[i][tick]
 a_csv_row.append("%s" % event.row_num)
 a_csv_row.append("%s" % _str_with_null_handling(event.note_num))
 a_csv_row.append("%s" % _str_with_null_handling(event.gate))
 if event.milliframe_len != prev_tempo[i]:
 tempo_update = event.milliframe_len
 else:
 tempo_update = ''
 a_csv_row.append("%s" % str(tempo_update))
 else:
 a_csv_row.append("")
 a_csv_row.append("")
 a_csv_row.append("")
 a_csv_row.append("")
 csv_rows.append(','.join(a_csv_row))
 spreadsheet = '\n'.join(csv_rows)
 spreadsheet = ','.join(csv_header) + '\n' + spreadsheet

 return spreadsheet

[docs] def convert_to_chirp(self, **kwargs):
 """
 Convert rchirp song to chirp

 :return: chirp conversion
 :rtype: ChirpSong
 """
 self.set_options(**kwargs)

 song = chirp.ChirpSong()
 song.metadata = copy.deepcopy(self.metadata)
 song.metadata.ppq = constants.DEFAULT_MIDI_PPQN
 song.name = self.metadata.name
 song.set_options(arch=self.arch) # So that round-trip will return the same arch
 note_milliframe_nums = [v.rows[r].milliframe_num for v in self.voices
 for r in v.rows if v.rows[r].gate is not None]
 note_milliframe_nums.sort()
 notes_offset_mf = note_milliframe_nums[0]
 milliframes_per_quarter = self.get_option('milliframes_per_quarter', None)

 if milliframes_per_quarter is None:
 # find the minimum divisor for note length
 milliframes_per_note = reduce(math.gcd, (t - notes_offset_mf for t in note_milliframe_nums))
 # Guess: Set the minimum divisor to be a sixteenth note.
 milliframes_per_quarter = 4 * milliframes_per_note

 frames_per_quarter = milliframes_per_quarter // 1000
 midi_ticks_per_quarter = constants.DEFAULT_MIDI_PPQN
 qpm = constants.ARCH[self.arch].frame_rate * 60 // frames_per_quarter
 song.set_qpm(qpm)
 midi_ticks_per_frame = midi_ticks_per_quarter / frames_per_quarter

 midi_tick = 0
 for iv, v in enumerate(self.voices):
 track = chirp.ChirpTrack(song)
 track.name = 'Track %d' % (iv + 1)
 track.channel = iv
 current_note = None

 for r in sorted(v.rows):
 row = v.rows[r]
 midi_tick = int(round((row.milliframe_num - notes_offset_mf) // 1000 * midi_ticks_per_frame))

 # In midi, note-on and note-off events are clear. Note-on begins a note. A note-off
 # (either a note-off or a note-on with velocity 0) starts the release phase of the
 # note. On a commodore 64, it's less clear. A gate on is necessary (but not
 # sufficient) to start a note playing, and is sometimes used to merely change an
 # existing note from its release back to its attack. The note (pitch) can change
 # without a new gate on event. A gate off, like midi note-off, starts the release.
 # But notes are free to change their pitch during the release, which can be as long
 # as 24 seconds.
 #
 # RChirp borrows the concept of "gate" state from the C64 SID chip. Chirp note
 # creation depends on the gate, which is passed to RChirp as a tri-state:
 # - True = gate was turned on (usually means a new note started)
 # - False = gate was turned off (frequently means a note is ending)
 # - None = gate is unchanged from previous row (the prior state is continuing)
 #
 # Chirp note is created when:
 # a) gate becomes True and there's a note in progress (meaning, current_note
 # is not None). After which, there's a different note in progress.
 # b) gate becomes False and there's a note in progress. After which, there's no
 # no in progress.
 #
 # If a note change happens when the gate is None, then that note is not
 # created in the Chirp conversion. Sometimes, this creates excellent musical
 # summarization when encountering what I'll call note storms (e.g., "arpeggio
 # chords" and the like), as C64 composers frequently use gate changes to
 # represent the starts and ends of such runs.
 # To see if this is useful in your use case, turn assert_gate_on_new_note to
 # False when extracting the SID.
 if row.gate:
 if row.note_num is not None: # e.g., a gate on with no WF would make it None
 if current_note:
 new_note = chirp.Note(
 current_note.start_time, current_note.note_num,
 midi_tick - current_note.start_time
)
 if new_note.duration > 0:
 track.notes.append(new_note)
 current_note = chirp.Note(midi_tick, row.note_num, 1)
 elif row.gate is False:
 if current_note:
 new_note = chirp.Note(
 current_note.start_time, current_note.note_num,
 midi_tick - current_note.start_time
)
 if new_note.duration > 0:
 track.notes.append(new_note)
 current_note = None

 if current_note:
 new_note = chirp.Note(
 current_note.start_time, current_note.note_num,
 midi_tick - current_note.start_time
)
 if new_note.duration > 0:
 track.notes.append(new_note)
 song.tracks.append(track)

 # The song is guaranteed to be quantized, so mark it as such.
 song.quantize(*song.estimate_quantization())
 return song

 Source code for chiptunesak.sid

Classes for SID processing (SID header parsing, SID note extraction, etc.)
#
SidDump class:
Playback details for PSID/RSID ("The SID file environment")
- https://www.hvsc.c64.org/download/C64Music/DOCUMENTS/SID_file_format.txt
#
This class supports many RSIDs. From sid documentation concerning RSIDs:
"Tunes that are multi-speed and/or contain samples and/or use additional interrupt
sources or do busy looping will cause older SID emulators to lock up or play very
wrongly (if at all)."
#
siddump.c was very helpful as a conceptual reference for SidImport:
- https://csdb.dk/release/?id=152422
siddump has an option for "frequency recalibration", where a user specifies
a base frequency for better note matching (different from the siddump frequency
tables that were set to 440.11 tuning if running on a PAL).
Instead, we've implemented NTSC/PAL-specific automated tuning detection (by sampling
some or all notes in a subtune). And instead of fixed frequency tables, we derive
tuning and architecture-based frequencies at runtime.
#
TODO:
- Only a small number of SIDs have been tested. Improve code robustness by writing a
driver program to test a 10 second extraction from every SID in HVSC, then autogather results.
- SidImport:print warning if jmp or jsr to memory outside of modified memory
- haven't tested processing of 2SID or 3SID yet
- Fast-apeggio chord detection and reduction
- would be nice when a note is predominately noise waveform, to mark it as percussion in the
RChirp. Then when exported (say, musicXML some day), it can come out as a cross note.
#
FUTURE:
- According to Abbott, sid2midi created midi placeholders for digi content. That might be useful
to add if the digi is, say, drums.

import csv
import math
from functools import reduce
import copy
from dataclasses import dataclass
from typing import List
from chiptunesak.constants import ARCH, DEFAULT_ARCH, CONCERT_A, freq_arch_to_freq, freq_arch_to_midi_num
from chiptunesak.byte_util import big_endian_int, little_endian_int
from chiptunesak.base import ChiptuneSAKIO, pitch_to_note_name
from chiptunesak import thin_c64_emulator
from chiptunesak.errors import ChiptuneSAKValueError, ChiptuneSAKContentError
from chiptunesak import rchirp

[docs]class SID(ChiptuneSAKIO):

 """
 Parses and imports SIDs into RChirp using 6502/6510 emulation with a thin C64 layer.

 This class is the import interface for ChiptuneSAK for SIDs. It runs the SID in the emulator, using the
 information in the SID header to configure the driver, and captures information from the interaction of the code
 with the SID chip(s) following init and play calls.

 The resulting data can be converted to an RChirpSong object and/or written as a csv file that has a row for each
 invocation of the play routine. The csv file is useful for diagnosing how the play routine is modifying
 the SID chip and helps inform choices about the conversion of the SID music to the rchirp format.

 """

 @classmethod
 def cts_type(cls):
 return "SID"

 def __init__(self):
 ChiptuneSAKIO.__init__(self)

 self.options_with_defaults = dict(
 sid_in_filename=None,
 subtune=0, # subtune to extract (zero-indexed)
 vibrato_cents_margin=0, # cents margin to control snapping to previous note
 tuning=CONCERT_A,
 seconds=60, # seconds to capture
 arch=DEFAULT_ARCH, # note: overwritten if/when SID headers get parsed
 gcf_row_reduce=True, # reduce rows via GCF of row-activity gaps
 create_gate_off_notes=True, # allow new note starts when gate is off
 assert_gate_on_new_note=True, # True = gate on event in delta rows with new notes
 always_include_freq=False, # False = freq in delta rows only with new note
 verbose=True, # False = suppress stdout details
)

 self.set_options(**self.options_with_defaults)

 self.sid_dump = None

[docs] def set_options(self, **kwargs):
 """
 Sets options for this module, with validation when required

 Note: set_options gets called on __init__ (setting defaults), and a 2nd
 time if options are to be set after object instantiation.

 :param kwargs: keyword arguments for options
 :type kwargs: keyword arguments

 See to_rchirp() for possible options
 """
 for op, val in kwargs.items():
 op = op.lower() # All option names must be lowercase
 if op not in self.options_with_defaults:
 raise ChiptuneSAKValueError('Error: Unexpected option "%s"' % (op))

 # FUTURE: May put parameter validations here

 self._options[op] = val # Accessed via ChiptuneSAKIO.get_option()

[docs] def capture(self):
 """
 Captures data by emulating the SID song execution

 This method calls internal methods that watch how the machine language program interacts with virtual
 SID chip(s), and records these interactions on a call-by-call basis (of the play routine).

 :return: captured SID data as a Dump object
 :rtype: Dump
 """
 importer = SidImport(self.get_option('arch'), self.get_option('tuning'))

 sid_dump = importer.import_sid(
 filename=self.get_option('sid_in_filename'), # SID file to read in
 subtune=self.get_option('subtune'),
 vibrato_cents_margin=self.get_option('vibrato_cents_margin'),
 create_gate_off_notes=self.get_option('create_gate_off_notes'),
 assert_gate_on_new_note=self.get_option('assert_gate_on_new_note'),
 always_include_freq=self.get_option('always_include_freq'),
 seconds=self.get_option('seconds'),
 verbose=self.get_option('verbose')
)
 self.sid_dump = sid_dump

 return sid_dump

 # def to_rchirp(self, sid_in_filename, /, **kwargs): # 3.8...
[docs] def to_rchirp(self, sid_in_filename, **kwargs):
 """
 Converts a SID subtune into an RChirpSong

 :param sid_in_filename: SID input filename
 :type sid_in_filename: str
 :return: SID converted to RChirpSong
 :rtype: RChirpSong

 :keyword options:
 * **subtune** (int = 0) - subtune to extract (zero-indexed)
 * **vibrato_cents_margin** (int = 0) - cents margin to control snapping to previous note
 * **tuning** (int = CONCERT_A) - tuning to use,
 * **seconds** (float = 60) - seconds to capture
 * **arch** (string='NTSC-C64') - architecture. **Note:** overwritten if/when SID headers get parsed
 * **gcf_row_reduce** (bool = True) - reduce rows via GCF of row-activity gaps
 * **create_gate_off_notes** (bool = True) - allow new note starts when gate is off
 * **assert_gate_on_new_note** (bool = True) - True => gate on event in delta rows with new notes
 * **always_include_freq** (bool = False) - False => freq in delta rows only with new note
 * **verbose** (bool = True) - print details to stdout
 """

 # If we don't have the SID import yet (via a prior capture() call) or if
 # the requested input filename is different than the one we used in
 # capture(), then import the SID file
 sid_dump = self.sid_dump
 if sid_dump is None or self.get_option('sid_in_filename') != sid_in_filename:
 kwargs['sid_in_filename'] = sid_in_filename
 self.set_options(**kwargs)
 sid_dump = self.capture()

 # create a more summarized representation by removing empty rows while
 # maintaining structure
 if self.get_option('gcf_row_reduce'):
 # determine which rows have activity that rchirp cares about
 rows_with_activity = [[] for _ in range(sid_dump.sid_file.sid_count)]
 for row_num, row in enumerate(sid_dump.rows):
 for chip_num, chip in enumerate(row.chips):
 for chn in chip.channels:
 if chn.note is not None or chn.gate_on is not None:
 rows_with_activity[chip_num].append(row_num)
 break
 self.reduce_rows(sid_dump, rows_with_activity)

 rchirp_song = rchirp.RChirpSong()

 rchirp_song.metadata.name = sid_dump.sid_file.name.decode("latin-1")
 rchirp_song.metadata.composer = sid_dump.sid_file.author.decode("latin-1")
 rchirp_song.metadata.copyright = sid_dump.sid_file.released.decode("latin-1")

 sid_count = sid_dump.sid_file.sid_count
 rchirp_song.voices = [
 rchirp.RChirpVoice(rchirp_song) for _ in range(sid_count * 3)]
 rchirp_song.voice_groups = [(1, 2, 3), (4, 5, 6), (7, 8, 9)][:sid_count]

 for row_num, sd_row in enumerate(sid_dump.rows):
 for chip_num, chip in enumerate(sd_row.chips):
 for chn_num, chn in enumerate(chip.channels):
 rc_row = rchirp.RChirpRow()
 rc_row.milliframe_num = sd_row.milliframe_num

 if chn.note is not None:
 rc_row.note_num = chn.note
 rc_row.instr_num = 1 # FUTURE: Do something with instruments?

 if chn.gate_on is not None:
 rc_row.gate = chn.gate_on

 rc_voice_num = chn_num + (chip_num * 3)
 rchirp_song.voices[rc_voice_num].append_row(rc_row)

 rchirp_song.set_row_delta_values()
 return rchirp_song

 # def to_csv_file(self, output_filename, /, **kwargs): # requires 3.8...
[docs] def to_csv_file(self, output_filename, **kwargs):
 """
 Convert a SID subtune into a CSV file

 Each row of the csv file represents one call of the play routine.

 :param output_filename: output CSV filename
 :type output_filename: str
 """
 sid_dump = self.sid_dump
 if sid_dump is None: # If not None, sid export already created by capture() call
 self.set_options(**kwargs)
 sid_dump = self.capture()

 # create a more summarized representation by removing empty rows while maintaining structure
 if self.get_option('gcf_row_reduce'):
 # determine which rows have activity that's important in the CSV
 rows_with_activity = [[] for _ in range(sid_dump.sid_file.sid_count)]
 for row_num, row in enumerate(sid_dump.rows):
 for chip_num, chip in enumerate(row.chips):
 if chip.vol is not None or chip.filters is not None \
 or chip.cutoff is not None or chip.resonance is not None:
 rows_with_activity[chip_num].append(row_num)
 else:
 for chn in chip.channels:
 if chn.freq is not None or chn.note is not None \
 or chn.gate_on is not None or chn.adsr is not None \
 or chn.waveforms is not None or chn.pulse_width is not None \
 or chn.filtered is not None or chn.sync_on is not None \
 or chn.ring_on is not None:
 rows_with_activity[chip_num].append(row_num)
 break
 self.reduce_rows(sid_dump, rows_with_activity)

 # create CSV
 csv_rows = []

 csv_row = ['playCall', 'Frame']
 for _ in range(sid_dump.sid_file.sid_count):
 # not going to include: no_sound_v3
 csv_row.extend(['Vol', 'Filters', 'FCutoff', 'FReson'])
 for i in range(1, 4):
 # not going to include: release_milliframe or oscil_on
 csv_row.extend([
 'v%dFreq' % i, 'v%dDeltaFreq' % i,
 'v%dNoteName' % i, 'v%dNote' % i, 'v%dCents' % i,
 'v%dTrueHz' % i, 'v%dGate' % i,
 'v%dADSR' % i, 'v%dWFs' % i, 'v%dPWidth' % i,
 'v%dUseFilt' % i, 'v%dSync' % i, 'v%dRing' % i
])
 csv_rows = [csv_row]

 for row in sid_dump.rows:
 csv_row = ['%d' % row.play_call_num]
 csv_row.append('{:.3f}'.format(row.milliframe_num / 1000))

 for chip in row.chips:
 csv_row.append(self.get_val(chip.vol))
 csv_row.append(self.get_val(Chip.filters_str(chip.filters)))
 csv_row.append(self.get_val(chip.cutoff))
 csv_row.append(self.get_val(chip.resonance))

 for chn_num, chn in enumerate(chip.channels):
 csv_row.append(self.get_val(chn.freq))
 if chn.df is None:
 csv_row.append('')
 elif chn.df < 0:
 csv_row.append('- {:d}'.format(chn.df))
 else:
 csv_row.append('+ {:d}'.format(chn.df))
 csv_row.append(chn.get_note_name())
 csv_row.append(self.get_val(chn.note))
 if chn.freq is not None:
 if chn.freq != 0:
 (_, cents) = freq_arch_to_midi_num(chn.freq, sid_dump.arch, sid_dump.tuning)
 csv_row.append('%d' % cents)
 else:
 csv_row.append('')
 csv_row.append('{:.3f}'.format(
 freq_arch_to_freq(chn.freq, sid_dump.arch)))
 else:
 csv_row.append('')
 csv_row.append('')
 csv_row.append(self.get_bool(chn.gate_on))
 csv_row.append(self.get_val(chn.adsr, '{:04X}'))
 csv_row.append(self.get_val(Channel.waveforms_str(chn.waveforms)))
 csv_row.append(self.get_val(chn.pulse_width))
 csv_row.append(self.get_bool(chn.filtered))
 oscil = chn_num + 1 # change 0 offset to 1 offset for display
 other_oscil = ((chn_num - 1) % 3) + 1 # same
 csv_row.append(
 self.get_bool(chn.sync_on, "sync%dWith%d" % (oscil, other_oscil)))
 csv_row.append(
 self.get_bool(chn.ring_on, "ring%dWith%d" % (oscil, other_oscil)))

 csv_rows.append(csv_row)

 with open(output_filename, "w", newline="") as f:
 writer = csv.writer(f)
 writer.writerows(csv_rows)

[docs] def get_val(self, val, format=None):
 """
 Used to create CSV string values when not None

 :param val: str or int
 :type val: str or int
 :param format: format descriptor, defaults to None
 :type format: str, optional
 :return: empty string, passed in value (with possible formatting)
 :rtype: str or int
 """
 if val is None:
 return ''
 if format is None:
 return val
 else:
 return format.format(val)

[docs] def get_bool(self, bool, true_str='on', false_str='off'):
 """
 Used to create CSV string values when not None

 :param bool: a boolean
 :type bool: bool
 :param true_str: string if true, defaults to 'on'
 :type true_str: str, optional
 :param false_str: string if false, defaults to 'off'
 :type false_str: str, optional
 :return: string description of boolean
 :rtype: str
 """
 if bool is None:
 return ''
 if bool:
 return true_str
 else:
 return false_str

[docs] def reduce_rows(self, sid_dump, rows_with_activity):
 """
 The SidImport class samples SID chip state after each call to the play routine.
 This creates 1 row per play call. For non-multispeed, in most trackers,
 this would require speed 1 playback (1 frame per row), which cannot be achieved
 (again, without multispeed). So this method attempts to reduce the number of
 rows in the representaton. It does so by computing the greatest common divisor
 for the count of inactive rows between active rows, and then eliminates the
 unnecessary rows (while preserving rhythm structure).

 # TODO: A row in cvs output contains all channels at a point in time. A row
 # in rchirp contains only one channel. When not making CVS output, better
 # results could be achieved by computing the GCD for each voice
 # independently.

 :param sid_dump: Capture of SID chip state from the subtune
 :type sid_dump: sid.Dump
 :param rows_with_activity: a list for each SID chip with a list of "active" row numbers
 :type rows_with_activity: list of lists
 :return: the row granularity (the largest common factor across all periods of inactivity)
 :rtype: int
 """

 # For each SID chip, find the min row num with activity, the max row num with
 # activity, and the minimum row granularity
 sid_row_gran = []
 sid_min_a_row = []
 sid_max_a_row = []
 for chip_num in range(sid_dump.sid_file.sid_count):
 a_rows = rows_with_activity[chip_num]
 sid_min_a_row.append(min(a_rows))
 sid_max_a_row.append(max(a_rows))
 sid_row_gran.append(reduce(math.gcd,
 (a_rows[i + 1] - a_rows[i] for i in range(len(a_rows) - 1)))) # noqa: E128

 # FUTURE coding: The Orchestrion had different metric modulations (different
 # minimum row granularities) on each SID, but this code is not yet
 # generalized enough to support this. (As a temporary work around, if you have
 # a 2SID or 3SID and want different minimum row granularities for each
 # SID-voice grouping, then extract each SID chip output separately.)
 # Collapsing the stats across SIDs (if more than 1)...
 if len(sid_row_gran) > 1:
 row_gran = reduce(math.gcd,
 (sid_row_gran[i + 1] - sid_row_gran[i] for i in range(len(sid_row_gran) - 1))) # noqa: E128
 else:
 row_gran = sid_row_gran[0]
 first_row = min(sid_min_a_row)
 last_row = max(sid_max_a_row)

 # reduce the rows
 i = 0
 reduced_rows = []
 for row_num in range(first_row, last_row + 1):
 if i % row_gran == 0:
 r = sid_dump.rows[row_num]
 reduced_rows.append(r)
 i += 1

 # TODO: If last_row contains a gate_on = True, may need to pad out with (row_gran-1) empty rows

 sid_dump.rows = reduced_rows
 return row_gran

class SidFile:
 def __init__(self):
 self.magic_id = None #: PSID or RSID
 self.version = None #: 1 to 4
 self.data_offset = None #: start of the C64 payload
 self.load_address = None #: often the starting memory location
 self.init_address = None #: often the init address
 self.play_address = None #: often the play address
 self.num_subtunes = None #: number of songs
 self.start_song = None #: starting song
 self.speed = None #: driver type for each subtune's play routine
 self.name = None #: SID name
 self.author = None #: SID author
 self.released = None #: SID release details
 self.c64_payload = None #: The C64 payload
 self.load_addr_preamble = False #: True if payload begins with 16-bit load addr
 self.flags = 0 #: Collection of flags
 self.flag_0 = False #: bit 0 from flags, True = COMPUTE!'s Sidplayer MUS data
 self.flag_1 = False #: bit 1 from flags
 self.clock = 0 #: video clock
 self.sid_model = 0 #: SID1 chip type
 self.sid2_model = 0 #: SID2 chip type
 self.sid3_model = 0 #: SID3 chip type
 self.start_page = 0 #: helps indicate where SID writes to memory
 self.page_length = 0 #: helps indicate where SID writes to memory
 self.sid2_address = 0 #: SID2 I/O starting address
 self.sid3_address = 0 #: SID3 I/O starting address
 self.sid_count = 1 #: Number of SIDs used (1 to 3)
 self.is_rsid = None #: True if rsid, False if psid

 def contains_basic(self):
 # From documentation:
 # "If the C64 BASIC flag is set, the value at $030C must be set with the
 # song number to be played (0x00 for song 1)."
 return self.flag_1 and self.is_rsid

 def get_arch_from_headers(self):
 """
 Get ChiptuneSAK architecture type from SID headers

 :return: architecture type
 :rtype: str
 """
 if self.clock == 1:
 return 'PAL-C64'
 if self.clock == 2:
 return 'NTSC-C64'
 # for values 0 or 3:
 return DEFAULT_ARCH

 def decode_clock(self):
 """
 Decode clock numerical value to string description

 :return: system clock description
 :rtype: str
 """
 if self.clock == 1:
 return 'PAL'
 if self.clock == 2:
 return 'NTSC'
 if self.clock == 3:
 return 'NTSC and PAL'
 return 'Unknown'

 def decode_sid_model(self, sid_model_inst):
 """
 decode sid model numeric value to string description

 :param sid_model_inst: either sid_model, sid2_model, or sid3_model
 :type sid_model_inst: int
 :return: sid model description
 :rtype: str
 """
 if sid_model_inst == 1:
 return 'MOS6581'
 if sid_model_inst == 2:
 return 'MOS8580'
 if sid_model_inst == 3:
 return 'MOS6581 and MOS8580'
 return 'Unknown'

 def parse_file(self, sid_filename):
 """
 Parse the SID file header structure and extract the binary

 :param sid_filename: SID filename to parse
 :type sid_filename: str
 """
 with open(sid_filename, mode='rb') as in_file:
 sid_binary = in_file.read()

 self.parse_binary(sid_binary)

 def headers_specify_cia_timer(self, subtune):
 """
 Determines if headers specify if the if play routine will be driven by the
 CIA timer driver. If so, speed is set by the init and/or play routine.

 :param subtune: subtune number (note: zero-indexed)
 :type subtune: int
 :return: True if speed bits designate CIA timer, None if rsid (headers don't specify)
 :rtype: bool
 """

 # FUTURE? Assumed initial environment below (if we want to up the fidelity
 # of our emulation someday)
 #
 # PSID:
 # - if speed flag 0, raster IRQ on any value < 0x100
 # - if speed flag 1, CIA 1 timer A with NTSC/PAL KERNAL defaults with counter
 # running and IRQs active
 #
 # RSID:
 # - raster IRQ set to 0x137, but not enabled
 # - CIA 1 timer A set to NTSC/PAL KERNAL defaults with counter running and
 # IRQs active

 if self.is_rsid:
 return None

 if self.version == 1:
 return False

 if subtune > 31:
 if self.flag_1: # PSID is PlaySid specific
 subtune %= 32
 else: # C64 Compatable
 subtune = 31

 return self.speed & pow(2, subtune) != 0 # True if CIA IRQ, False if raster IRQ

 def parse_binary(self, sid_binary):
 """
 Parse a SID file binary

 Parser code based on specs from:
 - https://www.hvsc.c64.org/download/C64Music/DOCUMENTS/SID_file_format.txt
 - http://unusedino.de/ec64/technical/formats/sidplay.html

 # 'PSID' or 'RSID'. 'PSID's are simple to emulate, while 'RSID's requires a higher level
 # of fidelity to play, up to a truer C64 environment.

 :param sid_binary: a SID file binary
 :type sid_binary: bytes
 """
 self.magic_id = sid_binary[0:4]
 if self.magic_id not in (b'PSID', b'RSID'):
 raise ChiptuneSAKValueError("Error: unexpected sid magic id")
 self.is_rsid = (self.magic_id == b'RSID')

 # version is 0x0001 to 0x0004. IFF >= 0x0002 means PSID v2NG or RSID
 self.version = big_endian_int(sid_binary[4:6])
 if not (1 <= self.version <= 4):
 raise ChiptuneSAKValueError("Error: unexpected SID version number")
 if self.is_rsid and self.version == 1:
 raise ChiptuneSAKValueError("Error: RSID can't be SID version 1")

 # Offset from the start of the file to the C64 binary data area
 self.data_offset = big_endian_int(sid_binary[6:8])
 if self.version == 1 and self.data_offset != 0x76:
 raise ChiptuneSAKValueError("Error: invalid dataoffset for v1 SID")
 if self.version > 1 and self.data_offset != 0x7C:
 raise ChiptuneSAKValueError("Error: invalid dataoffset for v2+ SID")

 # load address is the starting memory location for the C64 payload. 0x0000 indicates
 # that the first two bytes of the payload contain the little-endian load address (which
 # is always true for RSID files).
 # If the first two bytes of the C64 payload are not the load address, this must not be zero.
 # Conversely, if this is a PSID with an loading address preamble to the C64 payload, this
 # must be zero.
 self.load_address = big_endian_int(sid_binary[8:10])
 if self.load_address == 0 or self.is_rsid:
 self.load_addr_preamble = True

 # init address is the entry point for the song initialization.
 # If PSID and 0, will be set to the loading address
 # When calling init, accumulator is set to the subtune number
 self.init_address = big_endian_int(sid_binary[10:12])

 # From documentation:
 # "The start address of the machine code subroutine that can be called frequently
 # to produce a continuous sound. 0 means the initialization subroutine is
 # expected to install an interrupt handler, which then calls the music player at
 # some place. This must always be true for RSID files.""
 self.play_address = big_endian_int(sid_binary[12:14])
 if self.is_rsid and self.play_address != 0:
 raise ChiptuneSAKValueError("Error: RSIDs don't specify a play address")

 # From documentation:
 # The number of songs (or sound effects) that can be initialized by calling the
 # init address. The minimum is 1. The maximum is 256. (0x0001 - 0x0100)
 self.num_subtunes = big_endian_int(sid_binary[14:16])
 if not (1 <= self.num_subtunes <= 256):
 raise ChiptuneSAKValueError("Error: number of songs out of range")

 # the song number to be played by default
 self.start_song = big_endian_int(sid_binary[16:18])
 if not (1 <= self.start_song <= 256):
 raise ChiptuneSAKValueError("Error: starting song number out of range")

 # From documentation:
 # "For version 1 and 2 and for version 2NG, 3 and 4 with PlaySID specific flag
 # (+76) set, the 'speed' should be handled as follows:
 # Each bit in 'speed' specifies the speed for the corresponding tune number,
 # i.e. bit 0 specifies the speed for tune 1. If there are more than 32 tunes,
 # the speed specified for tune 32 is the same as tune 1, for tune 33 it is the
 # same as tune 2, etc.
 # For version 2NG, 3 and 4 with PlaySID specific flag (+76) cleared, the 'speed'
 # should be handled as follows:
 # Each bit in 'speed' specifies the speed for the corresponding tune number,
 # i.e. bit 0 specifies the speed for tune 1. If there are more than 32 tunes,
 # the speed specified for tune 32 is also used for all higher numbered tunes.
 #
 # For all version counts:
 # A 0 bit specifies vertical blank interrupt (50Hz PAL, 60Hz NTSC), and a 1 bit
 # specifies CIA 1 timer interrupt (default 60Hz).
 #
 # Surplus bits in 'speed' should be set to 0.
 # For RSID files 'speed' must always be set to 0.
 # Note that if 'play' = 0, the bits in 'speed' should still be set for backwards
 # compatibility with older SID players. New SID players running in a C64
 # environment will ignore the speed bits in this case.
 # WARNING: This field does not work in PlaySID for Amiga like it was intended,
 # therefore the above is a redefinition of the original 'speed' field in SID
 # v2NG! See also the 'clock' (video standard) field described below for 'flags'."

 self.speed = big_endian_int(sid_binary[18:22])
 if self.is_rsid and self.speed != 0:
 raise ChiptuneSAKValueError("Error: RSIDs don't specify a speed setting")

 # name, author, and released (formerally copyright) fields. From the docs:
 # These are 32 byte long Extended ASCII encoded (Windows-1252 code page) character
 # strings. Upon evaluating the header, these fields may hold a character string of
 # 32 bytes which is not zero terminated. For less than 32 characters the string
 # should be zero terminated
 self.name = sid_binary[22:54].split(b'\x00')[0]
 self.author = sid_binary[54:86].split(b'\x00')[0]
 self.released = sid_binary[86:118].split(b'\x00')[0]

 if self.version == 1:
 self.c64_payload = sid_binary[118:]
 if self.load_addr_preamble:
 self.load_address = self.get_load_addr_from_payload()
 self.c64_payload = self.c64_payload[2:]
 else:
 self.flags = big_endian_int(sid_binary[118:120])

 # From documentation:
 # "- Bit 0 specifies format of the binary data (musPlayer):
 # 0 = built-in music player,
 # 1 = Compute!'s Sidplayer MUS data, music player must be merged.
 # If this bit is set, the appended binary data are in Compute!'s Sidplayer MUS
 # format, and does not contain a built-in music player. An external player
 # machine code must be merged to replay such a sidtune.""
 self.flag_0 = self.flags & 0b00000001 != 0

 # From documentation:
 # "- Bit 1 specifies whether the tune is PlaySID specific, e.g. uses PlaySID
 # samples (psidSpecific):
 # 0 = C64 compatible,
 # 1 = PlaySID specific (PSID v2NG, v3, v4)
 # 1 = C64 BASIC flag (RSID)
 # This is a v2NG and RSID specific field.
 # PlaySID samples were invented to facilitate playback of C64 volume register
 # samples with the original Amiga PlaySID software. PlaySID samples made samples
 # a reality on slow Amiga hardware with a player that was updated only once a
 # frame.
 # Unfortunately, converting C64 volume samples to PlaySID samples means that
 # they can no longer be played on a C64, and furthermore the conversion might
 # potentially break the non-sample part of a tune if the timing between writes
 # to the SID registers is at all altered. This follows from the ADSR bugs in the
 # SID chip.
 # Today, the speed of common hardware and the sophistication of the SID players
 # is such that there is little need for PlaySID samples. However, with all the
 # PlaySID sample PSIDs in existence there's a need to differentiate between SID
 # files containing only original C64 code and PSID files containing PlaySID
 # samples or having other PlaySID specific issues. As stated above, bit 1 in
 # 'flags' is reserved for this purpose.
 # Since RSID files do not have the need for PlaySID samples, this flag is used
 # for a different purpose: tunes that include a BASIC executable portion will
 # be played (with the BASIC portion executed) if the C64 BASIC flag is set. At
 # the same time, initAddress must be 0."
 self.flag_1 = (self.flags & 0b00000010) != 0
 if self.is_rsid:
 if self.init_address == 0:
 if not self.flag_1:
 raise ChiptuneSAKValueError("Error: RSID can't have init address zero unless BASIC included")
 else:
 if self.flag_1:
 raise ChiptuneSAKValueError("Error: RSID flag 1 can't be set (BASIC) if init address != 0")
 # Now we can finally confirm allowed RSID init address ranges
 # ($07E8 - $9FFF, $C000 - $CFFF)
 if not ((2024 <= self.init_address <= 40959)
 or (49152 <= self.init_address <= 53247)):
 raise ChiptuneSAKValueError("Error: invalid RSID init address")

 # From documentation:
 # "- Bits 2-3 specify the video standard (clock):
 # 00 = Unknown,
 # 01 = PAL,
 # 10 = NTSC,
 # 11 = PAL and NTSC.
 # This is a v2NG specific field.
 # As can be seen from the 'speed' field, it is not possible to specify NTSC C64
 # playback. This is unfortunate, since the different clock speeds means that a
 # tune written for the NTSC C64 will be slightly detuned if played back on a PAL
 # C64. Furthermore, NTSC C64 tunes driven by a vertical blank interrupt have to
 # be converted to use the CIA 1 timer to fit into this scheme. This can cause
 # severe problems, as the NTSC refresh rate is once every 17045 cycles, while
 # the CIA 1 timer A is latched with 17095 cycles. Apart from the difference in
 # timing itself, the SID ADSR bugs can actually break the tune.
 # The 'clock' (video standard) field was introduced to circumvent this problem."
 self.clock = (self.flags & 0b0000000000001100) >> 2

 # From documentation:
 # "- Bits 4-5 specify the SID version (sidModel):
 # 00 = Unknown,
 # 01 = MOS6581,
 # 10 = MOS8580,
 # 11 = MOS6581 and MOS8580.
 # This is a v2NG specific field.""
 self.sid_model = (self.flags & 0b0000000000110000) >> 4

 # From documentation:
 # "- Bits 6-7 specify the SID version (sidModel) of the second SID:
 # 00 = Unknown,
 # 01 = MOS6581,
 # 10 = MOS8580,
 # 11 = MOS6581 and MOS8580.
 # This is a v3 specific field.
 # If bits 6-7 are set to Unknown then the second SID will be set to the same SID
 # model as the first SID."
 self.sid2_model = (self.flags & 0b0000000011000000) >> 6
 if self.sid2_model == 0:
 self.sid2_model = self.sid_model

 # From documentation:
 # "- Bits 8-9 specify the SID version (sidModel) of the third SID:
 # 00 = Unknown,
 # 01 = MOS6581,
 # 10 = MOS8580,
 # 11 = MOS6581 and MOS8580.
 # This is a v4 specific field.
 # If bits 8-9 are set to Unknown then the third SID will be set to the same SID
 # model as the first SID."
 self.sid3_model = (self.flags & 0b0000001100000000) >> 8
 if self.sid3_model == 0:
 self.sid3_model = self.sid_model

 if self.flags > 1023:
 print("Warning: bits 10-15 of flags reserved and expected to be 0")

 # From documentation:
 # "+78 BYTE startPage (relocStartPage)
 # This is a v2NG specific field.
 # This is an 8 bit number. If 'startPage' is 0, the SID file is clean, i.e. it
 # does not write outside its data range within the driver ranges. In this case
 # the largest free memory range can be determined from the start address and the
 # data length of the SID binary data. If 'startPage' is 0xFF, there is not even
 # a single free page, and driver relocation is impossible. Otherwise,
 # 'startPage' specifies the start page of the single largest free memory range
 # within the driver ranges. For example, if 'startPage' is 0x1E, this free
 # memory range starts at $1E00."
 self.start_page = sid_binary[120]

 # From documentation:
 # "+79 BYTE pageLength (relocPages)
 # This is a v2NG specific field.
 # This is an 8 bit number indicating the number of free pages after 'startPage'.
 # If 'startPage' is not 0 or 0xFF, 'pageLength' is set to the number of free
 # pages starting at 'startPage'. If 'startPage' is 0 or 0xFF, 'pageLength' must
 # be set to 0.
 # The relocation range indicated by 'startPage' and 'pageLength' should never
 # overlap or encompass the load range of the C64 data. For RSID files, the
 # relocation range should also not overlap or encompass any of the ROM areas
 # ($A000-$BFFF and $D000-$FFFF) or the reserved memory area ($0000-$03FF).
 self.page_length = sid_binary[121]
 # FUTURE: put in the checks mentioned above, generate a warning if violated

 # From documentation:
 # "+7A BYTE secondSIDAddress
 # Valid values:
 # - 0x00 (PSID V2NG)
 # - 0x42 - 0x7F, 0xE0 - 0xFE Even values only (Version 3+)
 # This is a v3 specific field. For v2NG, it should be set to 0.
 # This is an 8 bit number indicating the address of the second SID. It specifies
 # the middle part of the address, $Dxx0, starting from value 0x42 for $D420 to
 # 0xFE for $DFE0). Only even values are valid. Ranges 0x00-0x41 ($D000-$D410) and
 # 0x80-0xDF ($D800-$DDF0) are invalid. Any invalid value means that no second SID
 # is used, like 0x00."
 self.sid2_address = sid_binary[122]
 if self.version == 2:
 if self.sid2_address > 0:
 print("Warning: second SID address should not be defined for SID v2NG")
 elif (self.sid2_address % 2 == 1) or not ((0x42 <= self.sid2_address <= 0x7f) or (0xe0 <= self.sid2_address <= 0xfe)):
 print("Warning: invalid second SID address, therefore no 2nd SID")
 self.sid2_address = 0
 else:
 self.sid2_address = 53248 + (self.sid2_address * 16)

 # From documentation:
 # "+7B BYTE thirdSIDAddress
 # Valid values:
 # - 0x00 (PSID V2NG, Version 3)
 # - 0x42 - 0x7F, 0xE0 - 0xFE Even values only (Version 4)
 # This is a v4 specific field. For v2NG and v3, it should be set to 0.
 # This is an 8 bit number indicating the address of the third SID. It specifies
 # the middle part of the address, $Dxx0, starting from value 0x42 for $D420 to
 # 0xFE for $DFE0). Only even values are valid. Ranges 0x00-0x41 ($D000-$D410) and
 # 0x80-0xDF ($D800-$DDF0) are invalid. Any invalid value means that no third SID
 # is used, like 0x00.
 # The address of the third SID cannot be the same as the second SID.
 self.sid3_address = sid_binary[123]
 if self.version < 4:
 if self.sid3_address > 0:
 print("Warning: second SID address should not be defined for SID version <= 3")
 elif (self.sid3_address % 2 == 1) or not ((0x42 <= self.sid3_address <= 0x7f) or (0xe0 <= self.sid3_address <= 0xfe)):
 print("Warning: invalid third SID address, therefore no 3rd SID")
 self.sid3_address = 0
 elif self.sid2_address == self.sid3_address and self.sid3_address != 0:
 print("Warning: SID3 address cannot equal SID2 address")
 self.sid3_address = 0
 else:
 self.sid3_address = 53248 + (self.sid3_address * 16)

 if self.sid2_address > 0:
 self.sid_count += 1

 if self.sid3_address > 0:
 self.sid_count += 1

 self.c64_payload = sid_binary[124:]
 if self.load_addr_preamble:
 self.load_address = self.get_load_addr_from_payload()
 self.c64_payload = self.c64_payload[2:]

 if self.is_rsid and self.load_address < 2024: # < $07E8
 raise ChiptuneSAKValueError("Error: invalid RSID load address")

 def get_payload_length(self):
 """
 Return the length of the C64 native code embedded in the SID file

 :return: length of SID executable binary
 :rtype: int
 """
 return len(self.c64_payload)

 def get_load_addr_from_payload(self):
 """
 Return the load address from the payload
 Note: Not all payloads begin with a 16-bit load address, see other
 documentation in this class

 :return: C64 binary starting memory location
 :rtype: int
 """
 return little_endian_int(self.c64_payload[0:2])

MAX_INSTR = 0x100000

attack, decay, and release times in ms (4-bit setting range)
Values should be close enough: according to https://www.c64-wiki.com/wiki/ADSR
"these values assume a clock rate of 1MHz, while in fact the clock rate
of a C64 is either 985.248 kHz PAL or 1.022727 MHz NTSC"
attack_time_ms = [2, 8, 16, 24, 38, 56, 68, 80, 100, 250, 500, 800, 1000, 3000,
 5000, 8000]
decay_release_time_ms = [6, 24, 48, 72, 114, 168, 204, 240, 300, 750, 1500, 2400,
 3000, 9000, 15000, 24000]

@dataclass
class Channel:
 freq: int = 0 # C64 16-bit frequency (not the true auditory frequency)
 note: int = 0 # midi note value
 adsr: int = 0 # 4 nibbles
 attack: int = 0
 decay: int = 0
 sustain: int = 0
 release: int = 0
 release_milliframe: int = None # mf when release started, None if gate unchanged since last on
 gate_on: bool = False # True = gate on
 sync_on: bool = False # True = Synchronize c's Oscillator with (c-1)'s Oscillator frequency
 ring_on: bool = False # True = c's triangle output becomes ring mod oscillators c and c-1
 oscil_on: bool = True # False = oscillator off via test bit set (so no sound)
 waveforms: int = 0 # 4-bit waveform flags
 triangle_on: bool = False
 saw_on: bool = False
 pulse_on: bool = False
 noise_on: bool = False
 pulse_width: int = 0 # 12-bit
 filtered: bool = False # True = channel passes through filter
 new_note: bool = False # This state considered to be the start of a new note
 active_note: bool = False
 df: int = 0 # if no new note, record small delta in frequency (if any)

 def set_adsr_fields(self):
 """
 Set individual ADSR variables
 """
 self.attack = self.adsr >> 12
 self.decay = (self.adsr & 0x0f00) >> 8
 self.sustain = (self.adsr & 0x00f0) >> 4
 self.release = self.adsr & 0x000f

 def set_waveform_fields(self):
 """
 Set individual waveform flags (16 possible combinations)
 """
 self.triangle_on = self.waveforms & 0b0001 != 0 # noqa
 self.saw_on = self.waveforms & 0b0010 != 0 # noqa
 self.pulse_on = self.waveforms & 0b0100 != 0 # noqa
 self.noise_on = self.waveforms & 0b1000 != 0 # noqa

 @classmethod
 def waveforms_str(cls, waveforms):
 """
 Create a text display of waveform flags

 :param waveforms: a 4-bit value
 :type waveforms: int
 :return: text display of waveform flags
 :rtype: str
 """
 result = ''
 if waveforms is None:
 return result
 if waveforms & 0b1000 != 0:
 result = 'n'
 else:
 result = '.'
 if waveforms & 0b0100 != 0:
 result += 'p'
 else:
 result += '.'
 if waveforms & 0b0010 != 0:
 result += 's'
 else:
 result += '.'
 if waveforms & 0b0001 != 0:
 result += 't'
 else:
 result += '.'
 return result

 def get_note_name(self):
 """
 Converts the midi note number to its string note name representation

 :return: note name
 :rtype: str
 """
 if self.note is None:
 return ''

 if self.note < 0:
 return str(self.note) # out of range

 return pitch_to_note_name(self.note)

@dataclass
class Chip:
 vol: int = 0 # 4-bit resolution
 filters: int = 0 # 3 bits showing if hi, band, and/or lo filters enabled
 cutoff: int = 0 # 11-bit filter cutoff
 resonance: int = 0 # 4-bit filter resonance
 no_sound_v3: bool = False # True = channel 3 doesn't produce sound
 channels: List[Channel] = None # three Channel instances

 def __post_init__(self):
 self.channels = [Channel() for _ in range(3)]

 @classmethod
 def filters_str(cls, filters):
 """
 Create string representation of filter settings

 :param filters: 3-bit filter flags
 :type filters: int
 :return: string representation of filter settings
 :rtype: str
 """
 result = ''
 if filters is None:
 return result
 if filters & 0b00000100:
 result = 'h'
 else:
 result = '.'
 if filters & 0b00000010:
 result += 'b'
 else:
 result += '.'
 if filters & 0b00000001:
 result += 'l'
 else:
 result += '.'
 return result

class Row:
 def __init__(self, num_chips=1):
 self.play_call_num = None
 self.milliframe_num = None # when the play call happened
 self.chips = None # 1 to 3 Chip instances (2 for 2SID, 3 for 3SID)
 self.num_chips = num_chips # Number of SID chips assumed by SID song

 if not 1 <= self.num_chips <= 3:
 raise Exception("Error: Row must specify 1 to 3 SID chips")
 self.chips = [Chip() for _ in range(self.num_chips)]

 def contains_new_note(self):
 for chip in self.chips:
 for channel in chip.channels:
 if channel.new_note and channel.note != 0:
 return True
 return False

 def null_all(self):
 for chip in self.chips:
 chip.vol = chip.filters = chip.cutoff = chip.resonance = \
 chip.no_sound_v3 = None
 for chn in chip.channels:
 chn.freq = chn.note = chn.adsr = chn.attack = chn.decay = \
 chn.sustain = chn.release = chn.release_milliframe = chn.gate_on = \
 chn.sync_on = chn.ring_on = chn.oscil_on = chn.waveforms = \
 chn.triangle_on = chn.saw_on = chn.pulse_on = chn.noise_on = \
 chn.pulse_width = chn.filtered = chn.active_note = chn.df = \
 chn.new_note = None

class Dump:
 def __init__(self):
 self.sid_file = None # Contains the parsed SID file
 self.sid_base_addrs = [] # ordered list of where SIDs are memory mapped
 self.rows = [] # One row for each sample (after each call to the play routine)
 self.raw_freqs = [] # List of raw frequencies that can be used to derrive tuning
 self.arch = None # Set by load_sid()
 self.first_row_with_note = None # Row index for first row containing a note
 self.multispeed = 1 # 1/multispeed = num times play routine called per frame

 def is_multispeed(self):
 return self.multispeed != 1

 def load_sid(self, filename):
 """
 Load a SID file to be dumped. Architecture will be set by SID headers.

 :param filename: [description]
 :type filename: [type]
 """
 self.sid_file = SidFile()
 self.sid_file.parse_file(filename)
 self.arch = self.sid_file.get_arch_from_headers()

 def get_tuning(self, tuning_override=CONCERT_A):
 """
 As a throw-away first pass, the sid dump can be given a small sample
 (e.g. seconds=5) from which to determine the tuning of the SID's
 frequency tables. Using this tuning on the second full pass means
 that the cents deltas can be brought closer to 0 to make better note
 assignment decisions; especially helpful when there's wide vibrato.

 :return: tuple containing tuning, minimum_cents, and maximum_cents
 :rtype: (float, int, int)
 """
 all_cents = []
 for freq_arch in self.raw_freqs:
 if freq_arch == 0:
 continue
 if freq_arch_to_midi_num(freq_arch, self.arch, tuning_override)[0] < 0:
 continue # ChiptuneSAK does not support midi note numbers < 0 (< C-1)
 (_, cents) = freq_arch_to_midi_num(freq_arch, self.arch, tuning=tuning_override)
 all_cents.append(cents)

 average_cents = sum(all_cents) / len(all_cents)
 maximum_cents = max(all_cents)
 minimum_cents = min(all_cents)
 assert (abs(minimum_cents) <= 50 and abs(maximum_cents) <= 50), \
 "Error: not expecting cents to deviate by more than 50 when already derrived from nearest note"

 # Check deviation from CONCERT_A
 tuning = CONCERT_A * 2**(average_cents / 1200)

 return (tuning, minimum_cents, maximum_cents)

 def trim_leading_rows(self, rows_to_remove):
 self.rows = self.rows[rows_to_remove:]

class timerHistograms:
 def __init__(self):
 self.timers = [{}, {}, {}, {}]

 def update_hist(self, timer_index, value):
 """
 Update histogram of counts for values set for the specified CIA timer

 :param timer_index: 0=cia1a, 1=cia1b, 2=cia2a, 3=cia2b
 :type timer_index: int
 :param value: the 16-bit cycle count written to the timer
 :type value: int
 """
 timer_hist = self.timers[timer_index]
 if value not in timer_hist:
 timer_hist[value] = 0
 timer_hist[value] += 1

 def print_results(self):
 labels = ['CIA 1 timer A', 'CIA 1 timer B', 'CIA 2 timer A', 'CIA 2 timer B']
 for i in range(4):
 if len(self.timers[i]) > 0:
 print("%s latch value written to %d times, histogram: %s"
 % (labels[i], sum(self.timers[i].values()), self.timers[i]))

class SidImport:
 def __init__(self, arch=DEFAULT_ARCH, tuning=CONCERT_A):
 self.arch = arch # Note, overwritten when SID file loaded
 self.tuning = tuning # proper tuning can mean better vibrato note capture

 self.cpu_state = thin_c64_emulator.ThinC64Emulator()
 self.cpu_state.exit_on_empty_stack = True
 self.play_call_num = 0
 self.ordered_io_settings = []

 self.cia_event_display_count = 0

 def get_note(self, freq_arch, vibrato_cents_margin=0, prev_note=None):
 """
 For a given sound chip frequency, convert to a audio frequency
 and get the note. If the frequency is within vibrato_cents_margin
 of the previous note, then snap to the previous note.

 :param freq_arch: A sound chip frequency
 :type freq_arch: int
 :param vibrato_cents_margin: snaps to previous note if within this margin, defaults to 0
 :type vibrato_cents_margin: int, optional
 :param prev_note: previous midi note number, defaults to None
 :type prev_note: int, optional
 :return: midi note number
 :rtype: int
 """

 MAX_CENTS_IN_NOTE = 50
 max_extent = 90 # nearly an entire note

 if not 0 <= vibrato_cents_margin < max_extent:
 raise ChiptuneSAKValueError(
 "ERROR: vibrato_cents_margin must be >= 0 and < %d" % max_extent)

 # C-1 is the lowest note ChiptuneSAK handles, and the low-end of C-1 (midi
 # note 0) when A4=440 is ~8.0Hz
 # For frequencies to stay above 8.0Hz:
 # - NTSC C64, lowest allowed oscil freq is int(8.0*0x1000000/1022727) = 131
 # - PAL C64, lowest allowed is int(8.0*0x1000000/985248) = 136
 if freq_arch != 0 and freq_arch_to_midi_num(freq_arch, self.arch, self.tuning)[0] >= 0:
 (midi_num, cents_offset) = freq_arch_to_midi_num(freq_arch, self.arch, self.tuning)
 else:
 (midi_num, cents_offset) = (0, -MAX_CENTS_IN_NOTE + 1) # for anything < 8Hz

 # cents scale: note-1, -45, -40, ... -10, -5, note, +5, +10, ... +40, +45, note+1
 if prev_note is not None and abs(midi_num - prev_note) == 1 \
 and cents_offset != 0 and vibrato_cents_margin != 0:

 if prev_note > midi_num: # extend the margin into lower frequencies
 if cents_offset >= MAX_CENTS_IN_NOTE - vibrato_cents_margin:
 midi_num = prev_note
 else: # extend the margin into higher frequencies
 if cents_offset <= vibrato_cents_margin - MAX_CENTS_IN_NOTE:
 midi_num = prev_note

 return midi_num

 def call_sid_init(self, init_addr, subtune):
 """
 Emulate the call to the SID's initialization routine

 Init routines do various things like relocate code/data in memory,
 setting up interrupts, etc.

 :param init_addr: The entry point for the initialization routine
 :type init_addr: int
 :param subtune: The subtune for which to initialize the playback
 :type subtune: int
 """
 self.cpu_state.init_cpu(init_addr, subtune)
 while self.cpu_state.runcpu():
 if self.cpu_state.pc > MAX_INSTR:
 raise Exception("CPU executed a high number of instructions in init routine")

 # This is often an indication of a problem
 if self.cpu_state.last_instruction == 0x00:
 print("Warning: SID init routine exited with a BRK")

 def call_sid_play(self, play_addr):
 """
 Emulate the call to the SID's play routine

 Will return once emulation:
 - hits a BRK
 - hits an RTI or RTS, if the stack is empty(ish)
 - any other criteria put into the while loop body (PC in certain
 memory ranges, etc.)

 :param play_addr: The entry point for the play routine
 :type play_addr: int
 """
 # This resets the stack each time
 self.cpu_state.init_cpu(play_addr)

 # While loop to process play routine
 while self.cpu_state.runcpu():
 if self.cpu_state.pc > MAX_INSTR:
 raise Exception("CPU executed a high number of instructions in play routine")

 # siddump.c (reference code) has an interesting bug that appears to be a feature.
 # It exits emulation on RTI and RTS if called when stack is exactly $FF (empty)
 # If the stack is nearly empty (the RTI or RTS will make it wrap) or if the stack
 # has already wrapped, it won't exit that way. However, on the very next
 # instruction, it will exit with a BRK. Here's how:
 # siddump.c calls the play routine with an empty stack (pointer $ff), so an RTI or
 # RTS can often cause a stack wrap. For example:
 # the Master_of_the_Lamps_PAL.sid can exit the play routine this way:
 # PC: 3e81 sp: ff instr: 68 PLA
 # PC: 3e82 sp: 00 instr: a8 TAY
 # PC: 3e83 sp: 00 instr: 68 PLA
 # PC: 3e84 sp: 01 instr: aa TAX
 # PC: 3e85 sp: 01 instr: 68 PLA
 # PC: 3e86 sp: 02 instr: 40 RTI
 # This wrapped the stack all the way to x05. This is a low-fidelity emulation, and
 # the 256-byte stack was initialized to zero, so the PC gets set to $0000
 # PC: 0000 sp: 05 instr: 00 BRK
 # Again, low-fidelity emulation means location 0 contains a 0, and BRK is fetched
 # as the next instruction. This exits the PLAY loop, and only one instruction past
 # the intended exit.
 # This python code base doesn't require SP to exactly == $FF for an RTS or RTI
 # to return, so we won't be using this bug/feature to exit play routines.

 # Test if exiting through KERNAL interrupt handler
 # e.g., $EA31, $EA7E, and $EA81 exit attempts:
 if self.cpu_state.see_kernal and (0xea31 <= self.cpu_state.pc <= 0xea83):
 return # done with play call

 # This is often an indication of a problem
 if self.cpu_state.last_instruction == 0x00:
 print("Warning: SID play routine exited with a BRK")

 def track_io_settings(self, loc, val):
 """
 Callback method that keeps track of each I/O address and what was
 written to it in the play routine. Events are ordered.

 :param loc: [description]
 :type loc: [type]
 :param val: [description]
 :type val: [type]
 """
 if (0xd000 < loc < 0xdfff):
 self.ordered_io_settings.append((loc, val))

 def gate_was_set_for_voice(self, voice_ctrl_reg, gate_setting):
 """
 Returns True if the given voice control register was set in the play call
 with gate_setting True indicating gate was set on, or with gate_setting False
 indicating gate was set off. Otherwise, False.

 :param voice_ctrl_reg: the voice control register location
 :type voice_ctrl_reg: int
 :param gate_setting: the gate setting to check for (True = set on, False = set off)
 :type gate_setting: bool
 :return: True if voice_ctrl_reg's gate was set to get_setting during play call
 :rtype: bool
 """
 for (io_loc, io_val) in self.ordered_io_settings:
 if io_loc == voice_ctrl_reg and (gate_setting == (io_val & 0b00000001 == 1)):
 return True
 return False

 def print_call_log_for_cia_activity(self, ordered_io_settings, play_call_num=None):
 MAX_DISPLAY_COUNT = 50

 for loc, val in ordered_io_settings:
 if self.cia_event_display_count > MAX_DISPLAY_COUNT:
 return

 if play_call_num is None:
 init_desc = 'during SID init'
 else:
 init_desc = 'on play call %d' % play_call_num

 if 0xdc00 <= loc <= 0xdcff:
 cia_desc = 'CIA 1'
 else: # 0xdd--
 cia_desc = 'CIA 2'

 if loc in (0xdc04, 0xdc05, 0xdc0e, 0xdd04, 0xdd05, 0xdd0e):
 timer_desc = 'timer A'
 else:
 timer_desc = 'timer B'

 # process the two interrupt control registers' activity
 if loc in (0xdc0d, 0xdd0d):
 if val & 0b00000001 == 0:
 print("%s timer A disabled %s" % (cia_desc, init_desc))
 else:
 print("%s timer A enabled %s" % (cia_desc, init_desc))
 if val & 0b00000010 == 0:
 print("%s timer B disabled %s" % (cia_desc, init_desc))
 else:
 print("%s timer B enabled %s" % (cia_desc, init_desc))
 # process the four control registers' activity
 elif loc in (0xdc0e, 0xdc0f, 0xdd0e, 0xdd0f):
 if val & 0b00001000 == 0:
 run_mode_desc = 'continuous'
 else:
 run_mode_desc = 'one-shot'

 if val & 0b00000001 == 0:
 print("%s %s stopped %s" % (cia_desc, timer_desc, init_desc))
 else:
 print("%s %s started (%s run mode) %s" % (cia_desc, timer_desc, run_mode_desc, init_desc))

 if val & 0b00010000 != 0:
 print("%s %s set by the latched timer value %s" % (cia_desc, timer_desc, init_desc))
 # process the timer latch setting activity:
 elif (0xdc04 <= loc <= 0xdc07) or (0xdd04 <= loc <= 0xdd07):
 if loc % 2 == 0:
 byte_desc = 'lo'
 else:
 byte_desc = 'hi'
 print("%s %s %s-byte timer latch value written %s"
 % (cia_desc, timer_desc, byte_desc, init_desc))
 else:
 continue

 self.cia_event_display_count += 1
 if self.cia_event_display_count > MAX_DISPLAY_COUNT:
 print("etc. (too many CIA events to display)")

 def set_banks_before_psid_call(self, call_address):
 """
 Before any PSID init or play call, the bank settings must be reasserted
 (according to the expected SID environment settings, specified here
 https://www.hvsc.c64.org/download/C64Music/DOCUMENTS/SID_file_format.txt)
 This is not to be called for RSIDs.

 :param call_address: the PSID's init or play address
 :type call_address: int
 """

 if call_address < 0xa000:
 self.cpu_state.set_mem(0x0001, 0b00110111) # 0x37: I/O, KERNAL, BASIC
 elif call_address < 0xd000:
 self.cpu_state.set_mem(0x0001, 0b00110110) # 0x36: I/O, KERNAL
 elif call_address < 0xe000:
 self.cpu_state.set_mem(0x0001, 0b00110101) # 0x35: I/O
 else:
 self.cpu_state.set_mem(0x0001, 0b00110100) # 0x34: A full 64K of RAM exposed

 def import_sid(self, filename, subtune=0, vibrato_cents_margin=0, seconds=60,
 create_gate_off_notes=True, assert_gate_on_new_note=True,
 always_include_freq=False, verbose=True):
 """
 Emulates the SID song execution, watches how the machine language program
 interacts with the virtual SID chip(s), and records these interactions
 on a call-by-call basis (on the play routine).

 :param filename: The filename of the SID song to import
 :type filename: str
 :param subtune: the subtune to import, defaults to 0
 :type subtune: int, optional
 :param vibrato_cents_margin: if new note adjacent to old but within cents margin
 then, snap to old
 :type vibrato_cents_margin: int, optional
 :param seconds: seconds to capture, defaults to 60
 :type seconds: int, optional
 :param create_gate_off_notes: If True, can create new notes when gate is off
 :type bool
 :param assert_gate_on_new_note: If True, creates gate on event on new notes in
 delta rows
 :type bool
 :param always_include_freq: If False, only includes freq with new notes
 :type bool
 :param verbose: If False, stdout suppressed
 :type bool
 :return: A SID dump instance
 :rtype: Dump
 """

 sid_dump = Dump()
 sid_dump.load_sid(filename)

 if sid_dump.sid_file.contains_basic():
 raise ChiptuneSAKContentError("Error: BASIC code SIDs not yet supported")

 self.arch = sid_dump.arch # override SidImport arch param to what's in the SID headers
 sid_dump.tuning = self.tuning

 sid_dump.rows = []

 # If 2SID or 3SID, note where the chips are memory mapped
 sid_dump.sid_base_addrs = [0xd400]
 if sid_dump.sid_file.sid_count > 1:
 sid_dump.sid_base_addrs.append(sid_dump.sid_file.sid2_address)
 if sid_dump.sid_file.sid_count > 2:
 sid_dump.sid_base_addrs.append(sid_dump.sid_file.sid3_address)

 if len(sid_dump.sid_file.c64_payload) + sid_dump.sid_file.load_address >= 0x10000:
 raise ChiptuneSAKValueError("Error: SID data continues past end of C64 memory")

 self.cpu_state.inject_bytes(sid_dump.sid_file.load_address, sid_dump.sid_file.c64_payload)
 self.cpu_state.set_mem_callback = self.track_io_settings

 if sid_dump.sid_file.is_rsid:
 # RSIDs only have the initial bank setup
 self.cpu_state.set_mem(0x0001, 0b00110111) # 0x37: I/O, KERNAL, BASIC
 else:
 self.set_banks_before_psid_call(sid_dump.sid_file.init_address)

 # A clean PSID SID extraction is supposed to use either a VBI or CIA 1 timer A
 if verbose:
 if sid_dump.sid_file.is_rsid:
 print("SID type: RSID")
 else:
 print("SID type: PSID")
 if sid_dump.sid_file.headers_specify_cia_timer(subtune):
 print("headers indicate CIA timer driven")
 else:
 print("headers indicate VBI driven")

 if not sid_dump.sid_file.is_rsid and not sid_dump.sid_file.headers_specify_cia_timer(subtune):
 print("SID default environment assumption: all CIA timers disabled, loaded with 0xFFFF")
 else:
 print("SID default environment assumption: CIA 1 timer A active (continuous mode), "
 + "all other off timers disabled and loaded with 0xFFFF")

 timer_hists = timerHistograms()
 self.cpu_state.debug = False

 # useful for seeing how init and play routines touch the SID
 self.cpu_state.clear_memory_usage() # records if there was R or W activity per loc
 self.ordered_io_settings = [] # records multiple accesses to same loc
 zero_page_usage = set() # across all init and play calls

 # Initialize the SID subtune
 self.call_sid_init(sid_dump.sid_file.init_address, subtune)

 # self.cpu_state.print_memory_usage() # See what init touched
 self.cpu_state.update_zp_usage(zero_page_usage)
 if verbose:
 self.print_call_log_for_cia_activity(self.ordered_io_settings)

 # See if we're multispeed:
 # Note: this can't determine all RSID multispeed approaches, but should cover
 # PSID, which is supposed to use cia 1 timer a for multispeed
 if self.cpu_state.timer_was_updated(1, 'a'):
 cia_timer = self.cpu_state.get_cia_timer(1, 'a')
 timer_hists.update_hist(0, cia_timer)

 if self.arch == 'PAL-C64':
 expected_cia_timer = thin_c64_emulator.CIA_TIMER_PAL
 elif self.arch == 'NTSC-C64':
 expected_cia_timer = thin_c64_emulator.CIA_TIMER_NTSC
 else:
 raise Exception('Error: unexpected architecture type "%s"' % self.arch)

 # if not much change, multispeed will snap to 1 (actually, it'll stay at 1)
 if cia_timer != expected_cia_timer:
 if (max(cia_timer, expected_cia_timer) / min(cia_timer, expected_cia_timer) > 1.3):
 sid_dump.multispeed = cia_timer / expected_cia_timer
 if verbose:
 print("multi-speed factor of x{:f}".format(
 1 / sid_dump.multispeed))

 if self.cpu_state.timer_was_updated(1, 'b'):
 timer_hists.update_hist(1, self.cpu_state.get_cia_timer(1, 'b'))
 # FUTURE: If we want to develop this more, then check if new vector was
 # assigned to $FFFA/$FFFB (NMI) if ROMs banked out, or $0318/$0319 (NMI
 # handler) if ROMs banked in.
 if self.cpu_state.timer_was_updated(2, 'a'):
 timer_hists.update_hist(2, self.cpu_state.get_cia_timer(2, 'a'))
 if self.cpu_state.timer_was_updated(2, 'b'):
 timer_hists.update_hist(3, self.cpu_state.get_cia_timer(2, 'b'))

 # When play address is 0, the init routine installs an interrupt handler which calls
 # the music player (always the case with RSID files). This code attempts to get the
 # play address from the interrupt vector, so we don't have to emulate the interrupt
 # driver, and instead, we can directly call the play routine.
 if sid_dump.sid_file.play_address == 0:
 if self.cpu_state.word_was_updated(0x0314):
 # get play address from the pointer to the KERNAL's standard interrupt
 # service routine ($0314 defaults to $EA31)
 sid_dump.sid_file.play_address = self.cpu_state.get_le_word(0x0314)
 elif self.cpu_state.word_was_updated(0xfffe):
 # get play address from 6502-defined IRQ vector ($FFFE defaults to $FF48)
 sid_dump.sid_file.play_address = self.cpu_state.get_le_word(0xfffe)
 else:
 raise ChiptuneSAKContentError("Error: unable to determine play address")

 max_play_calls = int(seconds * ARCH[self.arch].frame_rate * (1 / sid_dump.multispeed))

 row = Row(sid_dump.sid_file.sid_count)
 row.play_call_num = 0
 row.milliframe_num = 0

 prev_row = Row(sid_dump.sid_file.sid_count)
 prev_row.null_all() # makes the initial delta_row work
 prev_row.play_call_num = 0
 prev_row.milliframe_num = -1 # Just as long as it's < 0

 delta_row = Row(sid_dump.sid_file.sid_count)
 delta_row.null_all()
 delta_row.play_call_num = 0
 delta_row.milliframe_num = 0

 # Note: We could set a reasonable stack pointer here if we wanted, but our
 # exit_on_empty_stack setting hopefully means we don't have to.
 # But if we did, a PSID is normally called with a JSR, so the stack pointer
 # would be $FD (only PC goes on stack) in our low-fidelity emulation when calling
 # the play routine.
 # However if play address was 0, the init routine is expected to set up an interrupt
 # to call it. This is true for all 3,208 RSIDs in HVSC72, and for 103 of the PSIDs
 # as well.
 # On interrupt, the CPU will push the PC (hi/lo) and flags to stack. The KERNAL
 # then pushes A, X, and Y if banked in. If not banked in, generally user code
 # will take over that responsibility. This means we could set the stack pointer
 # to $F9 when calling the play routine.

 self.cpu_state.debug = False

 while self.play_call_num < max_play_calls:
 if not sid_dump.sid_file.is_rsid:
 self.set_banks_before_psid_call(sid_dump.sid_file.play_address)

 self.cpu_state.clear_memory_usage()
 self.ordered_io_settings = []

 self.call_sid_play(sid_dump.sid_file.play_address)

 # self.cpu_state.print_memory_usage() # See what play touched
 self.cpu_state.update_zp_usage(zero_page_usage)

 post_call_bank_settings = self.cpu_state.get_mem(0x0001)

 if verbose:
 self.print_call_log_for_cia_activity(self.ordered_io_settings, self.play_call_num)

 # FUTURE: Currently this code doesn't honor speed changes from the play routine
 # (e.g., accelerandos, ritardandos, etc., or digi), only the init routine.
 if self.cpu_state.timer_was_updated(1, 'a'):
 timer_hists.update_hist(0, self.cpu_state.get_cia_timer(1, 'a'))
 if self.cpu_state.timer_was_updated(1, 'b'):
 timer_hists.update_hist(1, self.cpu_state.get_cia_timer(1, 'b'))
 if self.cpu_state.timer_was_updated(2, 'a'):
 timer_hists.update_hist(2, self.cpu_state.get_cia_timer(2, 'a'))
 if self.cpu_state.timer_was_updated(2, 'b'):
 timer_hists.update_hist(3, self.cpu_state.get_cia_timer(2, 'b'))

 # need to have I/O banked in, in order to read it
 if not self.cpu_state.see_io:
 if self.play_call_num == 0 and verbose:
 print("note: SID banks out IO after play calls")
 self.cpu_state.bank_in_IO()

 # record the SID(s) state

 # first, capture values that apply to all three channels
 for chip_num, sid_addr in enumerate(sid_dump.sid_base_addrs):
 # 11-bit filter
 # According to Leemon's Mapping the Commodore 64
 # The range of cutoff frequencies stretches form 30Hz to ~12,000Hz
 # frequency = (register value * 5.8) + 30Hz
 row.chips[chip_num].cutoff = (
 (self.cpu_state.get_mem(sid_addr + 0x16) << 3)
 | (self.cpu_state.get_mem(sid_addr + 0x15) & 0b00000111))

 # Filter Resonance Control Register
 # Note: bits 0-2 parsed out later, bit 3 ignored
 # Bit 0: Filter the output of voice 1? 1=yes
 # Bit 1: Filter the output of voice 2? 1=yes
 # Bit 2: Filter the output of voice 3? 1=yes
 # Bit 3: Filter the output from the external input? 1=yes
 # Bit 4-7: Select filter resonance 0-15
 filt_ctrl = self.cpu_state.get_mem(sid_addr + 0x17)
 row.chips[chip_num].resonance = filt_ctrl >> 4

 # Volume and Filter Select Register
 # Bits 0-3: Select output volume (0-15)
 # Bit 4: Select low-pass filter, 1=low-pass on
 # Bit 5: Select band-pass filter, 1=band-pass on
 # Bit 6: Select high-pass filter, 1=high-pass on
 # Bit 7: Disconnect output of voice 3, 1=voice 3 off
 vol_filt_reg = self.cpu_state.get_mem(sid_addr + 0x18)
 row.chips[chip_num].vol = vol_filt_reg & 0b00001111
 row.chips[chip_num].filters = (vol_filt_reg >> 4) & 0b00000111
 row.chips[chip_num].no_sound_v3 = (vol_filt_reg & 0b10000000) != 0

 # Next, capture channel-specific values
 for chn_num, chn in enumerate(row.chips[chip_num].channels):
 prev_chn = prev_row.chips[chip_num].channels[chn_num]

 mem_freq = sid_addr + 7 * chn_num
 chn.freq = self.cpu_state.get_le_word(mem_freq)
 sid_dump.raw_freqs.append(chn.freq)

 # 12-bit pulse
 # According to Leemon's Mapping the Commodore 64
 # pulse width = (register value / 40.95)%
 chn.pulse_width = \
 self.cpu_state.get_le_word(sid_addr + 0x02 + 7 * chn_num) & 0xfff

 # Voice Control Register
 # Bit 0: Gate Bit: 1=Start attack/decay/sustain, 0=Start release
 # Bit 1: Sync Bit: 1=Synchronize c's Oscillator with (c-1)'s Oscillator frequency
 # Bit 2: Ring Modulation: 1=c's triangle output = ring mod oscillators c and c-1
 # Bit 3: Test Bit: 1=Disable Oscillator (no sound)
 # Bit 4: Select triangle waveform
 # Bit 5: Select sawtooth waveform
 # Bit 6: Select pulse waveform
 # Bit 7: Select random noise waveform
 ctrl_reg = sid_addr + 0x04 + 7 * chn_num
 vcr = self.cpu_state.get_mem(ctrl_reg)
 chn.gate_on = vcr & 0b00000001 != 0 # noqa
 chn.sync_on = vcr & 0b00000010 != 0 # noqa
 chn.ring_on = vcr & 0b00000100 != 0 # noqa
 chn.oscil_on = vcr & 0b00001000 == 0 # noqa
 chn.waveforms = vcr >> 4
 chn.set_waveform_fields()

 # ADSR as four nibbles
 chn.adsr = ((self.cpu_state.get_mem(sid_addr + 0x05 + 7 * chn_num) << 8)
 | self.cpu_state.get_mem(sid_addr + 0x06 + 7 * chn_num))
 chn.set_adsr_fields()

 voices_filtered = filt_ctrl & 0b00000111
 # Determine if this channel is using the filter
 chn.filtered = (voices_filtered & (2 ** chn_num)) != 0

 # determine channel's envelope release status
 if chn.gate_on or self.play_call_num == 0:
 chn.release_milliframe = None # No release in progress
 else: # if channel gate is off
 if prev_chn.gate_on: # If gate just turned off
 # start of new release
 chn.release_milliframe = row.milliframe_num
 else:
 # continue with previous value (may be None)
 chn.release_milliframe = prev_chn.release_milliframe

 # set within_release_window to True if envelope is still releasing
 within_release_window = False
 if chn.release_milliframe is not None:
 ms_since_release = int((row.milliframe_num - chn.release_milliframe)
 * (ARCH[self.arch].ms_per_frame / 1000))
 within_release_window = \
 ms_since_release <= decay_release_time_ms[chn.release]

 # has sound been turned off for the channel?
 channel_off = not chn.oscil_on
 if (chn_num == 2) and row.chips[chip_num].no_sound_v3:
 channel_off = True

 # True if the last (not necessarily previous) change in gate status was to on
 gate_is_on = chn.release_milliframe is None
 prev_gate_is_on = prev_chn.release_milliframe is None

 # Is there an active (not released) note playing?
 chn.active_note = (
 not channel_off
 and chn.waveforms != 0 # tri, saw, pulse, and/or noise active
 and gate_is_on)

 # what the note will or would be for the current frequency
 chn.note = self.get_note(chn.freq, vibrato_cents_margin, prev_chn.note)

 # Normally, we sample the state of the SID chip after a play call.
 # However, this checks if a gate got breifly (microseconds) changed then
 # restored in the play loop, but the note frequency was unchanged:
 # - on->playLoop(off->on) means attack restarted on same note
 # - off->playLoop(on->off) means restarting a note on its release phase
 note_reasserted = (
 chn.freq == prev_chn.freq
 and gate_is_on == prev_gate_is_on # if gate same before and after play call
 and self.gate_was_set_for_voice(ctrl_reg, not prev_gate_is_on))

 # The following logic asserts a new note when
 # a) there's an active note (gate on with waveform) and on the previous
 # play call, there wasn't an active note, or
 # b) the active note was assigned a different note value from the
 # previous play call's note value, or
 # c) gate is off, but create_gate_off_notes is True, and
 # the note is different than the previous, and its release window
 # hasn't run out yet, or
 # d) the freq is the same as the previous freq, but the voice's gate was
 # double toggled in the play routine
 make_new_note = (
 chn.active_note and (
 not prev_chn.active_note
 or chn.note != prev_chn.note
 or note_reasserted
) or (
 create_gate_off_notes
 and (chn.note != prev_chn.note or note_reasserted)
 and within_release_window
)
)

 chn.new_note = (self.play_call_num == 0 or make_new_note)

 if self.play_call_num > 0:
 delta = chn.freq - prev_chn.freq
 else:
 delta = 0
 # if not a new note, but there's a change in frequency...
 if not chn.new_note:
 chn.df = delta
 else:
 chn.df = 0

 if sid_dump.first_row_with_note is None:
 if row.contains_new_note():
 sid_dump.first_row_with_note = self.play_call_num

 # Build delta_row (shows differences from previous row)

 # for each SID chip:
 for chip_num, chip in enumerate(row.chips):
 prev_chip = prev_row.chips[chip_num]
 delta_chip = delta_row.chips[chip_num]

 include = (self.play_call_num == sid_dump.first_row_with_note)

 if include or chip.cutoff != prev_chip.cutoff:
 delta_chip.cutoff = chip.cutoff

 if include or chip.filters != prev_chip.filters:
 delta_chip.filters = chip.filters

 if include or chip.vol != prev_chip.vol:
 delta_chip.vol = chip.vol

 if include or chip.resonance != prev_chip.resonance:
 delta_chip.resonance = chip.resonance

 if include or chip.no_sound_v3 != prev_chip.no_sound_v3:
 delta_chip.no_sound_v3 = chip.no_sound_v3

 # for each SID chip channel:
 for chn_num, chn in enumerate(row.chips[chip_num].channels):
 prev_chn = prev_chip.channels[chn_num]
 delta_chn = delta_chip.channels[chn_num]

 if always_include_freq or chn.new_note:
 delta_chn.freq = chn.freq

 if chn.new_note:
 delta_chn.note = chn.note

 if chn.df > 0:
 delta_chn.freq = chn.freq
 delta_chn.df = chn.df

 if chn.waveforms != prev_chn.waveforms:
 delta_chn.waveforms = chn.waveforms
 delta_chn.set_waveform_fields()

 # sid2midi will (always?) fail to create new notes when the gate is simply
 # left on (see Pool of Radiance). This is why we have assert_gate_on_new_note.
 if assert_gate_on_new_note and chn.new_note:
 delta_chn.gate_on = True # Used to influence RChirp->Chirp note creation
 elif chn.gate_on != prev_chn.gate_on:
 delta_chn.gate_on = chn.gate_on

 if include or chn.sync_on != prev_chn.sync_on:
 delta_chn.sync_on = chn.sync_on

 if include or chn.ring_on != prev_chn.ring_on:
 delta_chn.ring_on = chn.ring_on

 if include or chn.oscil_on != prev_chn.oscil_on:
 delta_chn.oscil_on = chn.oscil_on

 if chn.adsr != prev_chn.adsr:
 delta_chn.adsr = chn.adsr
 delta_chn.set_adsr_fields()

 if chn.pulse_width != prev_chn.pulse_width:
 delta_chn.pulse_width = chn.pulse_width

 if include or chn.filtered != prev_chn.filtered:
 delta_chn.filtered = chn.filtered

 # no need to include release_milliframe or new_note

 # end of per-channel loop

 sid_dump.rows.append(delta_row)

 # setup chips and channels for next iteration:

 prev_row = copy.deepcopy(row)
 self.play_call_num += 1
 millframes_to_next_call = int(sid_dump.multispeed * 1000)

 row = Row(sid_dump.sid_file.sid_count)
 row.play_call_num = self.play_call_num
 row.milliframe_num = prev_row.milliframe_num + millframes_to_next_call

 delta_row = Row(sid_dump.sid_file.sid_count)
 delta_row.null_all()
 delta_row.play_call_num = self.play_call_num
 delta_row.milliframe_num = prev_row.milliframe_num + millframes_to_next_call

 self.cpu_state.set_mem(0x0001, post_call_bank_settings) # possibly swap I/O back out

 if verbose:
 timer_hists.print_results()
 if len(zero_page_usage) == 0:
 print("no zero page usage!")
 else:
 print("zero page usage: %s" %
 ', '.join(str(loc) for loc in sorted(zero_page_usage)))
 if sid_dump.first_row_with_note > 0:
 sid_dump.trim_leading_rows(sid_dump.first_row_with_note)

 return sid_dump

if __name__ == "__main__":
 print("Nothing to do")

 _static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_images/BWV_755_clip.png
L 9

o

o £

nav.xhtml

 Table of Contents

 		
 ChiptuneSAK documentation

 		
 Introduction

 		
 ChiptuneSAK

 		
 What can I do with ChiptuneSAK?

 		
 What do I need to run ChiptuneSAK?

 		
 What are some limitations of ChiptuneSAK?

 		
 How mature is ChiptuneSAK?

 		
 Musical Concepts

 		
 Tuning

 		
 Base Tuning Frequency

 		
 Pitches and Cents

 		
 Chiptunes Tunings

 		
 Quantization

 		
 ChiptuneSAK Quantization

 		
 Polyphony

 		
 Polyphony in retro computers

 		
 Polyphony in ChiptuneSAK

 		
 Metric Modulation

 		
 Tuplets background

 		
 Metric Modulation in ChiptuneSAK

 		
 ChiptuneSAK Intermediate Representations

 		
 Intermediate Representations

 		
 Chirp Representation

 		
 MChirp Representation

 		
 RChirp Representation

 		
 Chirp Workflows

 		
 Details of Intermediate Representations

 		
 Chirp details

 		
 MChirp details

 		
 RChirp details

 		
 Notes on Chirp Music Representation

 		
 Tempo (BPM and QPM)

 		
 Tempo in Trackers

 		
 Octave and Frequency designations

 		
 ChiptuneSAK Music Formats

 		
 The MIDI Music Format

 		
 MIDI Files

 		
 Commodore SID Music

 		
 SID files

 		
 Importing SID files

 		
 GoatTracker (and GoatTracker Stereo)

 		
 GoatTracker in ChiptuneSAK

 		
 Sheet Music: Lilypond

 		
 Lilypond Sheet Music Markup

 		
 ChiptuneSAK and Lilypond

 		
 Lilypond Examples

 		
 C128 BASIC music programs

 		
 Using the PLAY command

 		
 TEMPO calculation

 		
 ChiptuneSAK handles all the details

 		
 Import / Export

 		
 I/O Base Class

 		
 Import functions

 		
 Export functions

 		
 MIDI

 		
 SID

 		
 GoatTracker

 		
 Lilypond

 		
 C128 BASIC

 		
 ML64

 		
 Music Processing and Transformation in Chirp

 		
 Simple Transformations

 		
 Quantization Transformations

 		
 Polyphony Transformations

 		
 Metadata Transformations

 		
 Advanced Transformations

 		
 ChiptuneSAK Examples

 		
 Chirp Examples

 		
 MS-DOS Game MIDI Example

 		
 Chord Splitting

 		
 Lilypond Sheet Music Examples

 		
 Lilypond Song to PDF

 		
 Lilypond Measures to PNG

 		
 C128 Basic Example

 		
 Metric Modulation Examples

 		
 Fix too-short note durations

 		
 Eliminate triplets

 		
 ChiptuneSAK Class Reference

 		
 Intermediate Representation Classes

 		
 Chirp

 		
 MChirp

 		
 RChirp

 		
 Input/Output Classes

 		
 MIDI Class

 		
 GoatTracker Class

 		
 SID Class

 		
 Lilypond Class

 		
 C128 Basic Class

 		
 ML64 Class

 		
 Compression Classes

 		
 One-Pass Class

 		
 Version History

 		
 Release History

 		
 0.6.0 (2020-08-28)

 		
 Development History

 		
 0.5.2 (2020-07-21)

 		
 0.5.1 (2020-07-17)

 		
 0.5.0 (2020-06-29)

 		
 0.4.0 (2020-06-27)

 		
 0.3.2 (2020-06-22)

 		
 0.3.1 (2020-06-07)

 		
 0.3.0 (2020-05-12)

 		
 0.2.9 (2020-05-05)

 		
 0.2.8 (2020-04-30)

 		
 0.2.7 (2020-04-25)

 		
 0.2.6 (2020-04-15)

 		
 0.2.5 (2020-04-04)

 		
 0.2.4 (2020-03-20)

 		
 0.2.3 (2020-03-15)

 		
 0.2.2 (2020-03-05)

 		
 0.2.1 (2020-02-27)

 		
 0.2.0 (2020-02-24)

 		
 0.1.5 (2020-02-12)

 		
 0.1.4 (2020-01-15)

 		
 0.1.3 (2020-01-07)

 		
 0.1.2 (2019-12-28)

 		
 0.1.1 (2019-12-28)

_images/RChirpStructure.png
RChirpSong

metadata

patterns

RChirpPattern RChirpPattern

RChirpVoice RChirpVoice RChirpVoice

RChirpOrderList RChirpOrderList RChirpOrderList

_images/bwv799measure42.png

_images/ChirpStructure.png
ChirpSong

metadata

ChirpTrack ChirpTrack ChirpTrack

_images/MChirpStructure.png
MChirpSong

metadata

MChirpTrack MChirpTrack MChirpTrack

measures measures measures

Measure Measure Measure Measure Measure Measure

Measure

_images/chopin_waltz_mod.png
[V)

[V)

-'- - °

_images/chirpWorkflow.png
Intermediate

Input Format Representation

Output Format

_images/chopin_waltz.png
L9 I

L9 I

_static/ajax-loader.gif

_static/ChiptuneSAKLogoSmall.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/down.png

